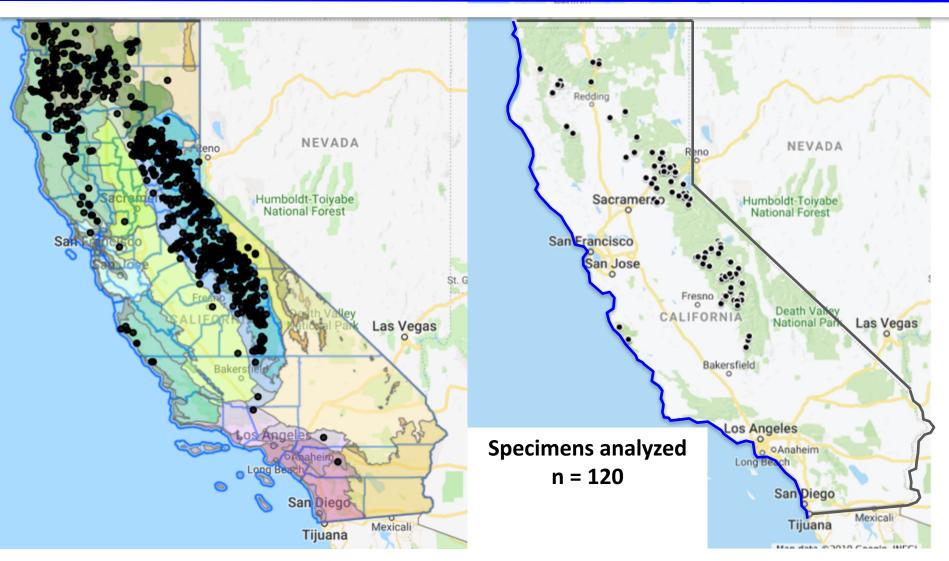
Counting reproductive organs:

the use of a quantitative phenological index in pheno-climatic models

Susan J. Mazer Department of Ecology, Evolution & Marine Biology UCSB (sjmazer@ucsb.edu)

Counting reproductive organs: the use of a quantitative phenological index in pheno-climatic models

- Preliminary case study in *Streptanthus tortuosus* (California jewelflower: Brassicaceae)
- Buds, flowers, and fruits: how we count 'em and use 'em
- Manuscript in progress (Natalie Rossington Love & Susan Mazer)
- Other ongoing work (Isaac Park & Susan Mazer)


Isaac Park

Natalie Love

Distribution of Streptanthus tortuosus

Actual: based on all electronic herbarium records now in Consortium of California Herbaria

Bud

Open flowers

Immature fruits

Mature fruits

Using ImageJ and its "Cell Counter" plug-in:

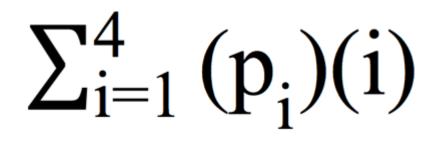
Point-and-click to record and to count all visible reproductive objects:

Buds Open flowers Immature fruits (or spent flowers) Mature fruits

Cell Counter provides a final count of each class of reproductive organs

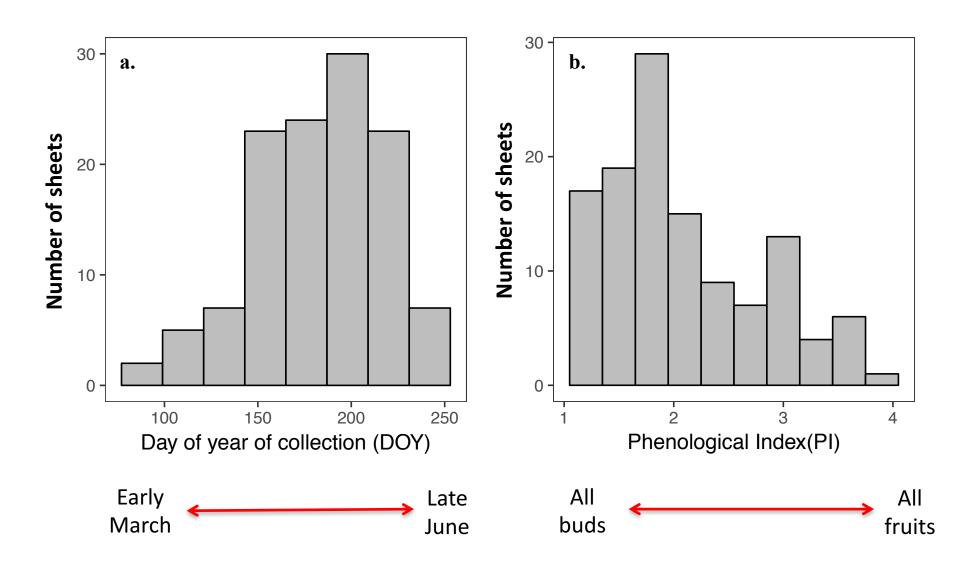
These counts can be used to obtain a quantitative index of the specimen's phenological status (*wait* for it...)

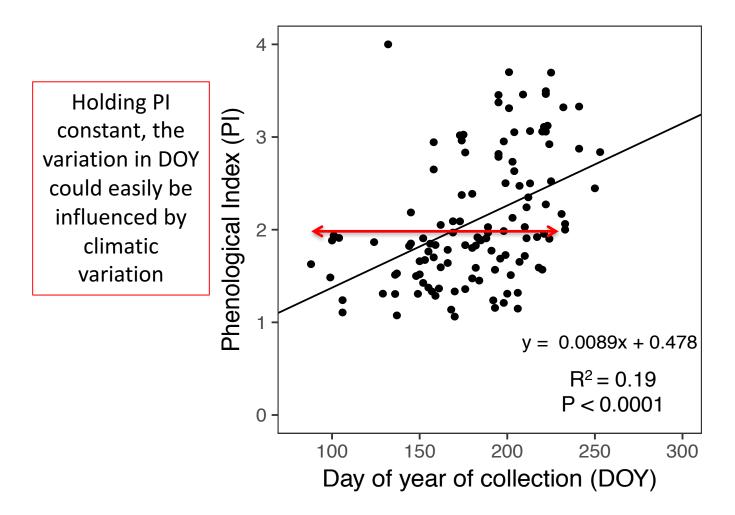
Phenological Index:


 $\sum_{i=1}^{4} (p_i)(i)$

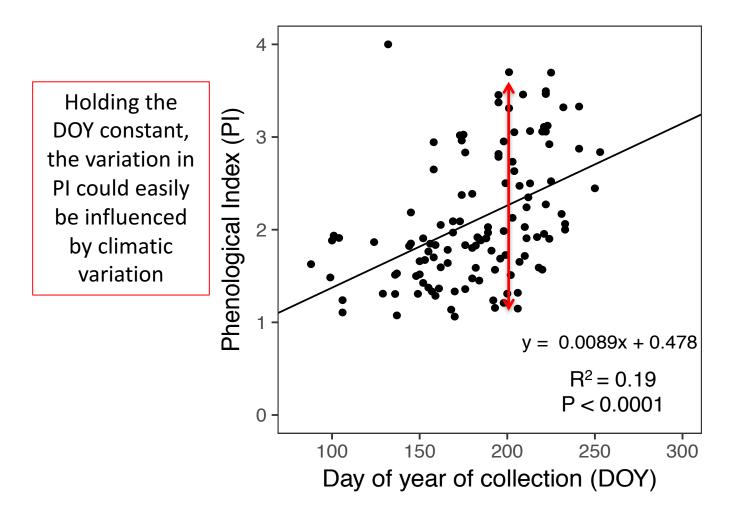
Where:

- \boldsymbol{p}_1 = proportion of all reproductive organs that are buds
- 1 = score of buds
- p_2 = proportion of all organs that are open flowers
- 2 = score of open flowers
- p_3 = proportion of all organs that are immature fruits
- 3 = score of immature fruits
- p_4 = proportion of all organs that are mature fruits
- 4 = score of mature fruits

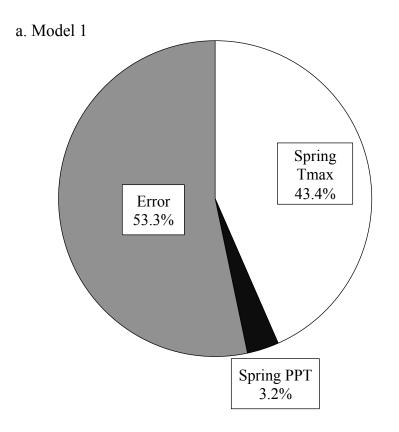

Phenological Index (PI):


And:

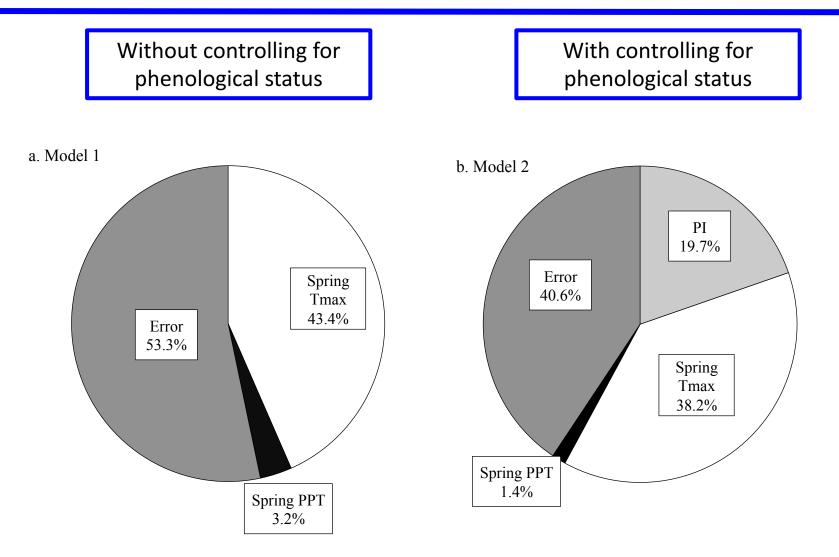
- PI = 1 for a specimen comprised only of buds
- PI = 4 for a specimen comprised only of ripe fruits


Distributions of collection date and phenological index of 120 *S. tortuosus* sheets

No surprise: Specimens collected relatively late in spring/summer are phenologically more advanced



No surprise: Specimens collected relatively late in spring/summer are phenologically more advanced



Proportion of variance in DOY explained by climate depends on whether PI is included in linear model

Without controlling for phenological status

Proportion of variance in DOY explained by climate depends on whether PI is included in linear model

	Analysis of Variance Source	df	Sequential SS	F ratio	P value
	Spring Tmax	1	64,949.88	96.08	< 0.0001
	Spring Precipitation	1	4,910.65	7.26	0.0081
Without	Error	118	79,770.80		
controlling for	<i>R2</i>				0.46
phenological	AICc				1137
status	Parameter Estimates				
	Term	Estimate	SE	t ratio	Prob > t
$R^2 = 0.46$	Intercept	221.25	12.02	18.41	< 0.0001
	Spring Tmax	-5.21	0.56	-9.3	< 0.0001
Spring Precipitatio		0.075	0.028	2.7	0.0081

	Analysis of Variance Source Phenological Index (PI) Spring Tmax Spring Precipitation	df 1 1 1	Sequential SS 29,386.30 56,984.56 2,147.62	F ratio 56.33 109.23 4.11	P value <0.001 <0.001 0.0447
Controlling for phenological status	Error R2 AICc	116	60,511.87		0.58 1097
$R^2 = 0.58$	Parameter Estimates Term	Estimate	SE	t ratio	Prob > t
	Intercept Phenological Index (PI)	188.11 18.2	11.88 3.01	15.83 6.07	<0.001 <0.001
	Spring Tmax Spring Precipitation	-5.01 0.05	0.49 0.02	-10.12 2.03	<0.001 0.0447

Upshot for *S. tortuosus*

- Controlling for the phenological status of plants when predicting DoY from climatic conditions increased R² by 26%
- The direction of the effects on DoY of spring Tmax and spring rainfall remained unchanged:
 - an increase of 1°C advanced DoY by ~5 days
 - an increase of 20 mm rainfall delayed DoY by 1 day
- Including the phenological status of plants in predictive models of DoY (based on climatic conditions) can allow a new type of practical prediction.....

Predictive models

DOY = PI + α_1 Climate Variable 1 + α_2 Climate Variable 2 +....

- Including the PI in predictive models reduces variance in DOY that is due to collecting plants at all stages of reproduction.
- More importantly, this kind of model enables us to predict the DOY of plants of a specified phenological status, under specified climatic conditions.
- In other words, we can use such models to predict the timing of specific phenophases of interest under specific climatic conditions.

Also in the works

 Collaboration with Isaac Park, using ~900,000 electronic records of specimens filtered for presence of flowers

TECHNICAL ADVANCE

WILEY Global Change Biology

Overlooked climate parameters best predict flowering onset: Assessing phenological models using the elastic net

Isaac W. Park 💿 | Susan J. Mazer 💿

PhenoForecaster: a software package for the prediction of flowering phenology

Isaac Park¹, Alex Jones², Susan J. Mazer¹ APPS, in review

Also in the works

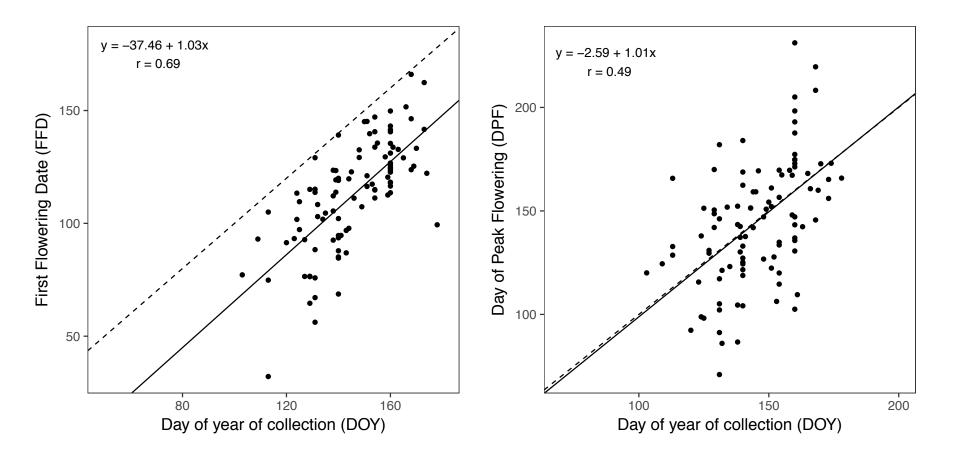
 Collaboration with Isaac Park, using ~60,000 electronic records of specimens filtered for presence of flowers

Climate affects the rate at which species successively flower:

capturing an emergent property of regional floras

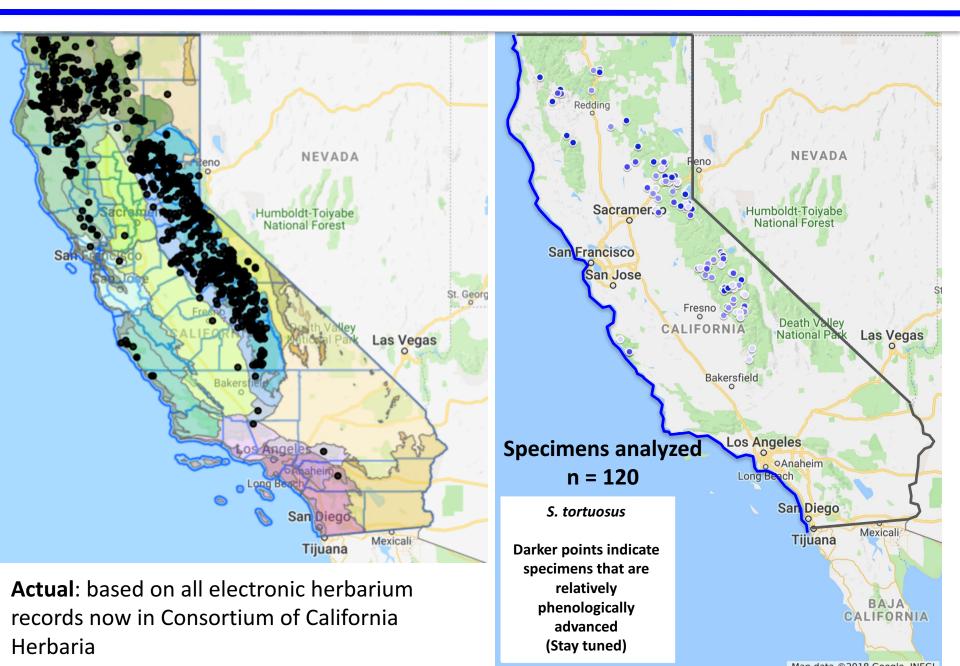
Isaac W. Park¹ and Susan J. Mazer

GEB, in revision


Also in the works

 Collaboration with Isaac Park, using ~460,000 electronic records of specimens filtered for presence of flowers

A century of frost in North America:


warming has reduced frost risk in 66% of angiosperm taxa

Isaac W. Park and Susan J. Mazer Nature, in review

_		
	Reproductive Unit	Definition
	Bud	Unopened flower with no perianth parts visible. Must be greater than 2mm to be counted.
	Flower	Perianth parts visible and attached to receptacle
	Immature Fruit	Immature ovary with no perianth parts attached at receptacle. Contains seeds that are not yet mature.
	Mature Fruit	Silique with mature seeds. Maturity can be determined if fruit has any evidence of dehiscence or if swollen, mature seeds cause a wavy silique margin.
$\left(\right)$		wavy sinque margin.

Distribution of Streptanthus tortuosus

