

Creating workflows for effective data migration and imaging in an invertebrate paleontology collection

Ann Molineux, Liath Appleton, Angella Thompson, Louis G. Zachos* Non-vertebrate Paleontology Laboratory, Jackson School of Geosciences, The University of Texas at Austin;

^{*} Department of Geology & Geological Engineering, University of Mississippi

Acknowledgements

- Volunteers and associates of NPL especially: Gareth Cross,
 Christopher Garvie, Cissy Geigerman, Judy Humer, Keith Minor
- Melissa Winans, Data analyst at Texas Natural Science Center
- Many of the protocols are based upon work supported by the National Science Foundation under grants:
 - DBI-1057396: Open Access: Conservation, Digitization and interoperability of the Historic Non-vertebrate Collections of the Texas Natural Science Center.
 - EF-1305070: Digitization PEN: Targeted digitization to expand and enhance the Paleoniches TCN.
 - Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Summary

iDigBio PaleoDigWkshp

Goals

- Digital archive
- Useful data
- Accessible data
- 'Short' time frame
- 'Lowest' cost

Tasks

- Digitize
- Digitize accurately
- Digitize effectively
- Digitize efficiently

Major issues-

iDigBio PaleoDigWkshp

Data migration

- Common relational database
 - Migrate from MS Access into Specify6
- Normalized data
 - Build reference trees
 - Translate data
 - Refine data
 - Upload data

Specimen imaging

- High quality images
 - Cope with multi-scale objects
 - Create excellent depth of field
 - Provide analytical ability
- Reference images
 - Basic specimen image
 - Capture label data
 - Group images (drawers)

Migration resources

iDigBio PaleoDigWkshp

9/14/2013

Translation tables

- Agent name
- BEG localities
- Chronostrat
- Lithostrat
- Storage [adding aisles]
- Taxon
- Titles [publications]

Open Refine

- Collection number
- Locality name
- Locality [verbatim]
- Storage location
- Old storage location
- Type status
- Preparation type
- Horizon and Series
- All dates
- Duplicate fields
- Catalog remarks

DATA CLEAN-UP

Standardized [Normalized] data

- Import into Refine database as xls, csv,xml etc
- BUT export from Refine will be formatted in 97-2003 xls

DATA STRUCTURE FOR WORKBENCH

MAIN FOCUS

Migration flow

iDigBio PaleoDigWkshp

Training tool-wiki

iDigBio PaleoDigWkshp

Confluence Documentation | Web Privacy Policy | Web Accessibility

iDigBio PaleoDigWkshp

Refine (Google/Open) 9/14/2013 iDigBio PaleoDigWkshp

7.	Check type	columns	and,	then	remove	column	Fossil	Inventory
catalog inventory								

8. Check accuracy column and Method for any useful info. In TA listed as "low", "med" or "high". (if accuracy is really long,

ADD METHOD AND ACCURACY TO LONGITUDE value + " " + cells["Method"].value + " - Accuracy: " + cells['

9. -lumped2 (renameMoveTypeStatus, combineLatLong, combineLoca

« Start Over		Configure Parsing Options						
	Loan_ID	Collection	Specimen	Suffix	CatalogNumber			
1.	1	TMM	822	96	TMM00000822.096			
2.	2	BEG	19163		BEG00019163.000			
3.	2	BEG	20928	2	BEG00020928.000			
4.	2	BEG	19168		BEG00019168.000			
5.	2	BEG	19166	2	BEG00019166.000			
6.	2	BEG	19167		BEG00019167.000			
7.	2	BEG	20938	2	BEG00020938.000			
8.	2	BEG	19164		BEG00019164.000			
9	2	BEG	20926		BEG00020926 000			

Workbench upload

iDigBio PaleoDigWkshp

Example workflow

iDigBio PaleoDigWkshp

9/14/2013

- Content 'expert' to database 'expert'
- ADD time to develop protocols
 - Translation tables from legacy data
 - Refine recipes to structure data

iDigBio PaleoDigWkshp

Data migration

- 4000 records per weekrefine and migrate to Specify via workbench (1FTE)
- 6000 per week, with1.5FTE
- 24000/month, 300,000/year

How long will it take?

- Current record count from all databases 500,000
- TWO years
- Assume no major glitches

Data migration rate

iDigBio PaleoDigWkshp

9/14/2013

NB: Graph x-axis variable time scale

- iDigBio 'Train the trainers' georeferencing workshop 10/8/2012
- In-house transfer of training knowledge 11/2012
- Rate is FTE constrained and FTE knowledge base

iDigBio PaleoDigWkshp

Image flow

how
prepare

Specimens to camera

Camera to specimens

storage

Standardization

iDigBio PaleoDigWkshp

9/14/2013

Common

- File naming convention
- One image views
- Standard lighting
- Scale bar
- JPEG and PDF

Specific to HiRes

- Multiple views
- Multi-focus composites
- Variable lighting
- Standard scale bars
- Embedded scaling
- TIFF and JPEG

Variable

- Ammonium chloride smoked
- India ink or less permanent stain
- Emersion

3D object imaging

iDigBio PaleoDigWkshp

The simulation ends when the specimens store is empty

RESOURCES

2D object scanning

9/14/2013

iDigBio PaleoDigWkshp

RESOURCES

The simulation ends when the *labels* store is empty

iDigBio PaleoDigWkshp

Hi-Res product

3D-Specimen image

ion

2D-Labels and photos

crow Raileri, Dea Courty, 1

Geographic Location

Bell County, Texas, USA

Geologic Age ?

Era: Mesozoic
Period: Cretaceous
Epoch: Early

Age: Albian

Stratigraphic Positi

Group: Fredericksburg
Formation: Edwards
Member:

Storage Location ?

PRC122, Types, 7, 182

figs. 1-4

Collector: WS Adkins

Collection Date:

Publication ②

Wells (1933) Bull. Amer. Paleo., v. 18, no. 67, p. 39, pl. 3, fig. 10, pl. 1,

iDigBio PaleoDigWkshp

Image workflow

Research imaging

iDigBio PaleoDigWkshp

9/14/2013

Zeiss Tessovar

- Found adaptor on line for Canon EOS 5 Mark II
- Using the same software protocols
- Especially useful for small specimens

Improving throughput

9/14/2013 iDigBio PaleoDigWkshp

Remote shooting

- Helicon remote
- Camera lens is driven by the software

Multi-focus rendering

Economic multi-focus shooting

Improving throughput

9/14/2013
iDigBio PaleoDigWkshp

Batch processing

- Final PhotoShop processing includes several JavaScripts, batch routines to generate scaled images, image metadata, standard backgrounds, scale bars, and trademarks.
- Scripts are available at http://www.utexas.edu/tmm/n pl/projects/imaging

Analytical quality

9/14/2013
iDigBio PaleoDigWkshp

JavaScripts applied to rendered image

Example using ImageJ

Images 'loaned'

iDigBio PaleoDigWkshp

9/14/2013

Improving throughput

9/14/2013

<u>iDigBi</u>o PaleoDigWkshp

Basic reference + label

Minimal processing

Label text is legible: Specimen detail adequate: Thumbnails for drawers

Rapid imaging

9/14/2013 iDigBio PaleoDigWkshp

Stationary Photosimile light box

In situ imaging

Individual and drawer imaging

iDigBio PaleoDigWkshp

Basic inventory in situ

- Select drawer
- Clean and conserve specimens
- Count specimens
- Complete inventory sheet
- Make specimen # visible

Basic drawer imaging

- Image whole drawer
- Link to ArcOnline for browsing

Basic specimen imaging

- Select drawer
- Remove specimen from bag
- Flatten labels beneath glass
- Add specimens
- Image using iPad
- Bag historic labels
- Return drawer
- Attach image files to Specify record
- Create thumbnails to form 'drawer'
- Link to ArcOnline for browsing

Rapid imaging flow

iDigBio PaleoDigWkshp

9/14/2013

Inventory-conserve-image

Results

- Record image of specimen
- Labels are legible and provide additional data for the database
- Can be linked to ArcOnline for browsing

Can be linked to ArcOnline for browsing

iDigBio PaleoDigWkshp

In situ imaging

Workflow

iDigBio PaleoDigWkshp

Imaging

- High resolution- 5 per hour [on both Tessovar and Stand]
 - Processing-file numbering, composites, scaling
- Basic imaging- 9-17 lots per hour
- In situ (Mobile) imaging-17 lots per hour

Trade-offs

- Hi-Res- research quality- higher training curve
- Rapid- inventory- low training curve
- In situ- inventory- flexibility

Results

- All capture label data
- All can be linked to the database as attachments
- Complete drawer imaging provides a feasible way to virtually view via the GIS system

Online assets

iDigBio PaleoDigWkshp

- Main campus access
 - Teaching
 - Research
- Global access
 - Research
- Query access
 - Research
 - Public enquiry
- Inventory
- Conservation
- Space assets

Online accessbility

9/14/2013

iDigBio PaleoDigWkshp

Home-NPL | Home-JSG

About NPL

Practices & Protocols

GIS-Geographic Information Systems

The databases are linked to a geographic information system (GIS) map of both repository buildings. This allows us to find information about each specimen when in the repository, and also to know where it is located within the buildings of the repository.

Current developments include on-line access to enable virtual browsing of the specimens with whole drawer images.

The GIS linked system improves our emergency management and will enhance our pest management. For example, we can locate zones susceptible to concrete moisture 'weeping' and ensure that any cabinets in those areas are raised off the floor surface. We can also monitor areas with noticeable pests and target mitigation procedures more effectively.

Part of the GIS map of the NW cage in the main repository. The tabular details refer to the highlighted cabinet on the map. Other aspects of the collection environment are tied to this system.

Visually browse our collections below or access more details via this test link

iDigBio PaleoDigWkshp

35

Goal iDigBio PaleoDigWkshp

Share with anyone Database w. Export to Link to spatial linked management Excel images system **IPT Export** with (Integrated Darwin Core **Publishing Toolkit)** Dynamic Web **BISON** iDigBio **GBIF PaleoPortal** Access **NEW DATA & UPDATES** FEED BACK