Label Image Automation

Effects of Image Quality, Pixel Scale, and Camera Pose on OCR Accuracy

- What resolution do we require in order for OCR to be robust?
- What are the image processing steps that will help prepare imagery into an optimal form?

OCR candidates being tested: Tesseract & Ocropus

- Provide command line interface that is easy to integrate with prototyping scripts
- Provide API for incorporation into performance-driven implementations of the pipeline as it matures (if necessary)
- Modular design enables range of customization paths

Effect of Pixel Scale

OCR ERRORS

or of pages
Green to the control of the control of

unreadable

ed pages
Given a
mate the
al length,
and then
a camera
n various
e or imignificant
tion. The
especially

o auvan

- with a Small Camer Workshop Applications
- [19] G.K. Myers, R.C. B Aradhye, "Rectificati Int'l J. Document Ana 158, July 2005.
- [20] J. Malik and R. Roser and Shape from Tex Vision, vol. 23, no. 2,
- [21] J. Gårding, "Shape f Perspective Projection 350, 1992.
- [22] O. Ben-Shahar and S Texture Flow: A Co Pattern Analysis and 1

1

		SCALE	ERRORS
ng unit in nages can	[23] A.R. Rao and R.C. Oriented Texture Fie <i>Intelligence</i> , vol. 14, r [24] D.C. Knill, "Contour	1x	0
ng unit in nages can	[23] A.R. Rao and R.C. Oriented Texture Fie <i>Intelligence</i> , vol. 14, r		
no	[24] D.C. Knill, "Contour	2x	0
ng unit in nages can	[23] A.R. Rao and R.C. Oriented Texture Fie Intelligence, vol. 14, r		
no	[24] D.C. Knill, "Contour	4x	1
ng unit in	[23] A.R. Rao and R.C. Oriented Texture Fie		
nages can	[24] D.C. Knill, "Contour	8x	11

Effect of Smoothing

ERRORS

Intelligence, D.C. Knill,

8

Intelligence, D.C. Knill,

1

OCR

- Size matters each OCR package seems to have a preferred size for characters
- Characters resized might need post-processing (e.g. smoothing) to successfully be read
- OCR is sensitive to the orientation of text (experiments not shown)

Implications for labels: need carefully aligned and re-sized image of text for each label

Obtaining an OCR-ready image

- Positioning of Camera(s)
 - multiple labels in one image
 - high quality image of all labels
 - minimize perspective distortion
 - characters scaled for successful OCR

- Image processing
 - Clean up
 - Alignment
 - Composite image from multiple views

USA: WI: Dane Co., Conrad Station Savanna Restoration.* Blue Md Park 43° 1' 18.36"N 89° 51' 3.59" W

Descriptive text giving location of the specimen in the pin. FIELD MUS. NAT. HIST.

Can't see upper label from viewpoints below this line

HINT HINT

HINT

Character Size Decreases the labell

HINT

na hable Hill

Camera Positioning:

we can mathematically model the size/distortion of the characters as a function of the camera optics (focal length, pixel scaling) and the camera pose (distance and orientation)

$$w =$$
 width of label in image pixels

"goal"

$$k_x = \text{optics parameters (f, scaling)}$$

 $\ell =$ label dimension

"fixed"

$$d_x, d_z = \text{camera position}$$

 $\phi = \text{camera orientation}$

"controlled"

$$w = k_x \frac{d_x + \ell/2\sin\phi}{d_z + \ell/2\cos\phi}$$

Size of individual characters

$$c = f(k_x, d_x, d_z, \phi; \text{position on label})$$

Obtaining an OCR-ready image

- Positioning of Camera(s)
 - multiple labels in one image
 - high quality image of all labels
 - minimize perspective distortion
 - characters scaled for successful OCR

- Image processing
 - Clean up
 - Alignment
 - Composite image from multiple views

USA: WI: Dane Co., Conrad Station Savanna Restoration.* Blue Md Park 43° 1' 18.36"N 89° 51' 3.59" W

Descriptive text giving location of the specimen in the pin. FIELD MUS. NAT. HIST.

Can we re-align?

Camera Images

USA: WI: Dane Co., Conrad Stat on Savanna Restoration. Blue Md Park 43° 1' 18.36"N 89° 51' 3.59" W

Re-Aligned

USA: WI: Dane Co., Conrad Stat on Savanna Restoration. Blue Md Park 43° 1' 18.36"N 89° 51' 3.59" W

Can we make a composite or use just pieces of each?

Composite Image via registration & averaging

- •Used "best in class" registration to automatically align images
- Average pixels from all aligned images

Does not adjust for:

- Poor quality (i.e. out of focus pixels)
- Obstructions (e.g. pin)

USA: WI: Dane/Co., Conrad Station Savanna Restoration: Blue Md Park 43° 1' 18.36"N 89° 51' 3.59" W

Winner take all

One pixel selected from each image based on:

- 1) Max value
- 2) Min value
- 3) median value

Future: Need to consider other methods – e.g. Pixel "quality" measure?

Try in-painting?

- Need a decent mask
- •Doesn't seem to be an improvement over simpler methods

OCR on composite images

Average

USA: WI: Dane Co.,
Conrad Station Savanna
Restoratior^{ib}N3lue Md Park
43⁰ 1' 18.36"N 89° 51' 3.59" W

Max

USA: WI: Dane Co
Conrad Station Savanna
Restoration! Blue Md Park
43° 1' 18_36"N 89" 51' 3.59" W

Median

USA: WI: Dane Ca, Conrad Station Savanna Restoration.431ue Md Park 43⁰ 1' 18.36"N 89° 51' 3.59"W

A Label Automation Flowchart

Tesseract OCR timing test: 1000 characters per second

Data storage: in TBs range

Label Automation

- OCR may be feasible solution
 - Train & improve performance
- Need to collect high quality images
 - Enough resolution for successful OCR
 - Handle occlusion, poor focus, distortion
- Computation (OCR, possibly improved image processing) is not a bottleneck