STEM Integration in K12 Education

Claudia Gran | PhD Student Curriculum & Instruction

Where?

- Formal
- After School
- Informal Settings

Why?

- Connected \rightarrow Relevant
- Enhances motivation
- Increases interest in STEM Careers
- Promotes 21st Century skills
- STEM Literacy
- How it is

STEM in the Curriculum

MATHEMATICS

- Arithmetic
- Geometry
- 🗟 Algebra
- Trigonometry
- Calculus

SCIENCE

- \delta Biology
- Chemistry
- Physics
 - Earth/Space

TECHNOLOGY

- Industrial Arts
- Instructional Tech
- Construction/ Manufacturing
- Project Lead the Way

ENGINEERING

Science and Engineering Practices – NGSS

6

Project Lead the Way: www.pltw.org

- Scientific Illustrations Scientific Observation Journal Sketching Measurements
- Mapping

Rendering

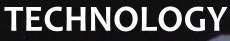
Laura Beach

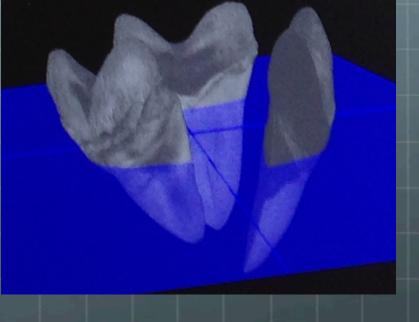
How can we do it?

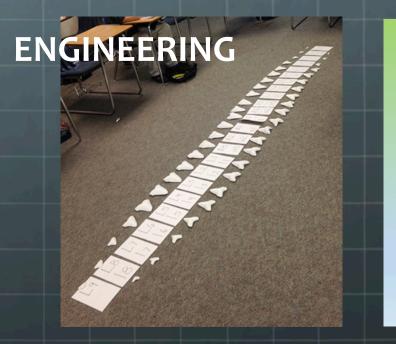
E=MC^{2,0}

Ø

6

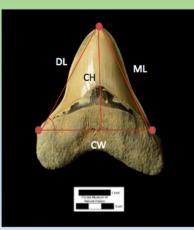

Scientists Museum Staff Educators Curriculum & Instruction **Educational Technology Graduate Students**


Collaboration


SCIENCE

Megalodon Extinction

Megalodon Evolution



Geometry of Megalodon

- 1. Mark three points and make triangle
- 2. Measure dimensions (CH, CW, DL, ML)
- 3. Calculate remaining angles using geometry theorems

MATHEMATICS

Slide by Victor Perez

Lower left 3rd tooth (I3)

SCIENCE

Paleo climate Climate Change

TECHNOLOGY

ART

MATH & ENGINEERING

Mesh: UF_2210.ply Vertices: 239018 Faces: 494546

Position: 35%

Illustration by Jason Bourque

The Scope

Different combinations of the STEM disciplines

Emphasis on one discipline more than others

Presented in formal or informal settings

Involve a range of pedagogical strategies

DEFINITIONS

Integrated, connected, unified, interdisciplinary, multidisciplinary, cross-disciplinary, trans disciplinary...


STEM Integration Descriptive Framework

Goals for Students

- STEM Literacy
- 21 Century Skills
- STEM workforce readiness
- Interest & Engagement
- Making Connections

Goals for Educators

- Increased STEM content knowledge
- Increased pedagogical content knowledge

Outcomes for Students

- Learning & Achievement
- 21st Century Competencies
- STEM Course taking, educational persistence, and graduation rates
- STEM Interest
- Development of STEM identity
- Ability to make connections among STEM disciplines

Outcomes for Educators

- Changes in practice
- Increased STEM content and pedagogical content knowledge

STEM Integration Descriptive Framework

Nature and Scope of Integration

- Type of STEM connections
- Disciplinary emphasis
- Duration, size and complexity of initiative

Integrated STEM Education

Implementation

- Instructional Design
- Educator supports
- Adjustment to the learning environment.

How is the framework useful?

- To better understand what is confusing and/or under-researched.
- Productive and meaningful discussion about efforts in the name of integrated STEM education.
- Can be used to examine and compare other integrated STEM programs
- Enable researchers in education and cognitive sciences to learn about critical elements.
- Help set goals

MESGENEE

EXCEPTFOR PHYSICS, CHEMISTRY AND MATHEMATICS

Interest, Identity and Persistence

Integration vs. No integration and the impact on student motivation.

 Preliminary research finds that STEM Integration is beneficial especially to:
Struggled with STEM classes
Underrepresented in STEM fields
Underrepresented in STEM professions

Connections

Improvement in student performance

Learning and Transfer

Favors cognition

Prior Knowledge

Research Opportunities

Learning and Achievement

- Integration leads to improved conceptual learning of <u>EACH</u> discipline.
- Need research on learning about the connections.
- Most research has been done about integrated Math and Science with positive results in test scores (Hurley 2001).
 - Sequenced (preceding)
 - Parallel (simultaneously)
 - Partial (together/separated)
 - Enhanced
 - 🚳 Total (equal)

Need consensus on definition of "integrated" so pedagogy can be consistent.

Research Opportunities

Interest and Identity

- Preliminary stage
- Not enough studies, and only a few of good quality
- Promising results
- Opportunities to transform identities with respect to STEM
- Many connections between MATH & SCIENCE--- Need more connections with ENGINEERING & TECHNOLOGY
- 3D Technology

Recommendations I

Document, document and document

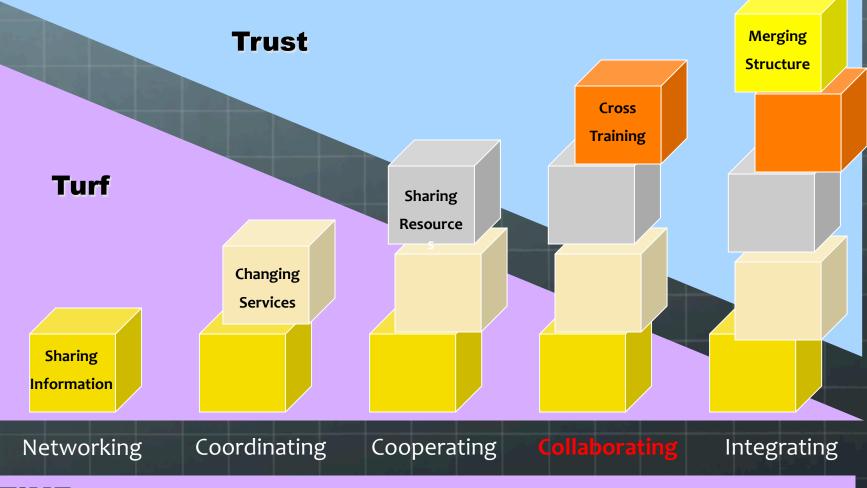
- Common language
- Outcomes should be measured based on clear hypotheses about how Integrated STEM education supports learning.
- More longitudinal studies, multiple methods, diversity and equity.
- Be explicit about the goals. Design integrated STEM experience to fulfill those goals. Know WHY and HOW the STEM Integrated experience will lead to a particular OUTCOME and HOW the outcome will be MEASURED.

Recommendations II

- Designers need to provide opportunities that make STEM connections explicit to students and educators.
- Designers need to attend to learning goals and learning progressions in the individual STEM subjects.
- Hands-on Professional Development for educators.
- Assessments to measure learning and affective outcomes (NSF)
- Collaboration as a model

Scientists Museum Staff Educators Curriculum & Instruction **Educational Technology Graduate Students**

Collaboration


Planet Science

Planet K12

Scientists Professors Graduate Students Educators Curriculum & Instruction Educational Technology

Collaboration Continuum

http://www.actforyouth.net/youth_development/communities/collaboration.cfm

STEM Integration in K-12 Education

STATUS, PROSPECTS, AND AN AGENDA FOR RESEARCH

www.nap.edu/catalog/18612/stem-integration-in-k-12-education-status-prospects-and-an

National Academy of Engineering and National Research Council. STEM Integration in K-12 Education: Status, Prospects, and an Agenda for Research. Washington, DC: The National Academies Press, 2014.