
Multiple Spark/Flink
clusters on 
YARN/Kubernetes
Pankaj Chand



How do Spark and Flink clusters 

get dynamically instantiated on 

YARN

(Explanation includes details regarding Flink but the details are very 
similar for Spark)

Note: The latest stable versions of Spark and Flink work natively 
with Hadoop 2, but do not work with Hadoop 3 yet.



YARN creates one Application Master per application, and this 

Application Master is responsible for the execution of that 

single application. This Application Master requests for 

containers from the Resource Manager and executes specific 

programs (e.g., the main of a Java class) on the obtained 

containers.

Hence, YARN handles each client request for a Flink or Spark 

cluster by treating each such Flink/Spark cluster as a unique 

single application, and making one Application Master to 

handle each such application (Flink/Spark cluster).



• A Flink/Spark yarn-client needs to be installed on 
any node in the YARN cluster that is used to submit 
the job.

• The Flink/Spark yarn-client will submit an outer-job 
(i.e. Flink cluster application) and optionally, an 
inner-job (i.e. Flink data processing application) to 
the YARN cluster, and request an Application Master.

• YARN will create an Application Master and 
corresponding outer-job for the Flink cluster. The 
Flink cluster contains its own Master process and 
Resource Manager that will handle the resources for 
the inner-job.

Hadoop Job

Spark/Flink

Job



Flink on YARN



Flink on YARN

• Flink’s Master process (JobManager) runs in the same container as the 

Application Master.

• All ports allocated by YARN on its containers are ephemeral ports. This 

allows multiple clients to execute multiple Flink and Spark sessions in 

parallel.

• Once the Flink cluster is ready, it either executes the inner-job (slide 4) 

uploaded as part of the jar-file, or waits for inner-jobs to be submitted.



Flink on Kubernetes
2 options:

First option: Run Flink, Spark, or any other system in standalone mode within 
containers in Kubernetes:

• Simple commands to start such a cluster (for single jobs or long-running 
sessions)

• Flink or Spark is unaware of Kubernetes. Hence, Flink/Spark have their 
own Resource Manager and Scheduler which only knows about the 
resources that are given to it by Kubernetes.

• Flink/Spark cannot communicate with Kubernetes’ resource management 
and scheduling.



Second option: Run Flink and Spark natively in Kubernetes.

We will have a Flink/Spark kubernetes-client that will influence the 
Kubernetes’ Resource Management and Scheduler.

Flink/Spark will communicate with Kubernetes to:

• Provision (or remove) Executors as required, i.e. Resource Elasticity
• Leverage existing Kubernetes constructs and features, such as resource 

quota, namespaces, logging, etc.
• Enforce multi-tenant and multi-user isolation requirements (by using 

Kubernetes specific features)

Flink natively on Kubernetes



Flink natively on Kubernetes



Concluding points
• Flink running natively on Kubernetes is only available for long-

running cluster sessions, and not for single-job clusters.

• I’m not sure if the ports generated by Kubernetes are 
ephemeral, but Kubernetes uses Namespaces and Resource 
Quotas to divide the Kubernetes-cluster resources among 
users. Hence, Namespaces can be used to run multiple Flink
and Spark clusters in parallel.

• Running Flink natively on Kubernetes is in an experimental 
(Beta) stage, and so it is not complete and will be changed a 
lot in the near future.



Lastly, CEPH documentation states that 
running CEPH on Hadoop requires 
Hadoop 1.1.X series.

I have not seen any article where CEPH 
works with Hadoop 2 or Hadoop 3.


