Linking museum specimens with physiological ecology to model susceptibility to climate change in desert bird communities

Eric Riddell, Kelly Iknayan, Blair Wolf, Barry Sinervo and Steve Beissinger

Museum of Vertebrate Zoology University of California, Berkeley iDigBio 2018

How do physiological traits influence habitat suitability?

"...restricted distributions are likely due to various physiological and psychological aspects...."

Grinnell 1917

Climate change increases number of lethal dehydration days

CURRENT CLIMATE

Albright et al. 2017

Climate change increases number of lethal dehydration days

FUTURE CLIMATE

Albright et al. 2017

Albright et al. 2017

The Grinnell Resurvey Project: Leveraging 100 years of change

THE GRINNELL RESURVEY PROJEC

THE MUSEUM OF VERTEBRATE ZOOLOGY, UC BERKELEY

RESURVEY LOCATIONS PEOPLE INVOLVED REFUGIA Номе CURRENT RESEARCH PUBS AND PRODUCTS NEWS

Recent News

Resurveys of birds in California's Central Valley initiated in summer 2015.

Resurvey Before and After Photos

Deserts are physiologically stressful but have minimal human impacts

Most birds declined over the last 100 years

Iknayan et al., In review

Wide range of species that have declined over the last 100 years

Sources of heat flux from the perspective of a bird

Assign biophysical properties

Bergmann's rule: Intra- and interspecific latitudinal variation in body size

Intraspecific latitudinal variation in body size

VertNet

Variation in body size is ecologically-relevant for many species

Large individuals tend to exhibit stronger effects consistent with Bergmann's rule

log(Slope)

Species that follow Bergmann's rule exhibit similar levels of decline

Don't break Bergmann's rule if you're big

counter-Bergmann's rule

Species that follow Bergmann's rule exhibit similar levels of decline

Summary

The collapse of desert bird communities appears to be related to the ineffectiveness of larger birds to efficiently cool

Bigger birds appear to be more influenced by warming than smaller birds

Intraspecific variation in body size appears to influence interspecific vulnerability to climate change

Acknowledgements

Carla Cicero

Rauri Bowie

Chris Conroy

Carol Spencer

Steve Beissinger Blair Wolf Kell Iknayan Sean Peterson Nathan Van Schmidt Tierne Nickel Lelena Avila

Bergmann's rule: an absolute mechanism - not a relative mechanism

Bergmann's rule: an absolute mechanism - not a relative mechanism

Intra- and interspecific latitudinal variation in body size

- Mass declines with warmer climates
- But sometimes mass increases with warmer climates
- Bigger species tend to follow
 Bergmann's rule

Bergmann's rule: Intra- and interspecific latitudinal variation in body size

Birds that declined with warm temperatures also declined over last century

Birds that declined with warm temperatures also declined over last century

Shrinking body mass as a 3rd global response to climate change

predictions about change in mass to maintain same level

Biophysical model helps us to evaluate responses to climate change

Biophysical model helps us to evaluate responses to climate change

