

Smithsonian Institution

Deep Learning with Botanical Specimen Images

A Voyage into Neural Networks

Sylvia Orli
orlis@si.edu @sylviaorli
Department of Botany
National Museum of Natural History

Digitization at US Herbarium

- 1970 First digitization initiative
- 2001 Images included in digital record
- 2015 Digitization through conveyor
- Summer 2017 2.2 million inventory records, 1.4 million specimen images total

What information does a specimen image hold?

- ■Image Metadata
- **■** Collection information
- Taxonomic determinations
- Plant material
- Paper

Partnerships

Artificial Neural Networks

"a computer system modeled on the human brain and nervous system."

- Computational model used in machine learning
- Used for common every day applications
- GPU and image resource requirements
- A "deep learning" complex model is constructed between raw inputs and the resulting outputs

Graphic by Andrew Ng

Deep Learning

Mercury contaminants

- Mercury added to specimens as insecticide
- Visibility markings show in older specimens
- Estimated 2-5% of specimens affected
- → Hot spots in herbarium

Challenges in identifying contaminated samples

- Requires large sample size
- Contaminated vs. non-contaminated samples need to be randomly selected
- Contamination can be unevenly dispersed on specimen
- Contamination is not always contamination
- Contamination not always oxidized and visible

NMNH Deep Learning Approach

- Create neural net model using Mathematica software (Wolfram language)
- Convolutional neural net
- Supervised learning
- Use highly stratified clean / contaminated image set
- Image set: 70% training, 20% validation and 10% test

Initial Approach – 2000 images

Partition the high-res images into 128x128 px tiles to inflate training dataset

Entropy Distribution of Labelled Tiles

Classifying Tile Samples

Probability of "Clean"

Distribution of mean probability (clean) over all test images

Clean

Accuracy: 95%

Contaminated Accuracy: 92%

Gathering more images

- 9380 images of contaminated sheets
- 9383 images of clean sheets
- Reduce Full Image dimensions to
 256 x 256
- Use full image instead of tile probability

Entropy Distribution of Full Specimen Images

Clean

Contaminated

Image classifier (Confusion Matrix)

- 92% accuracy in detecting clean vs. contaminated specimens
- Higher accuracy with further tweaking of neural nets

Distribution of probability (clean) over all test images

Misclassified specimens

Further Deep Learning Uses

- Plant family differences
- Species Identification
- Transcription of specimen labels
- Collaborations?