A Pipeline for Processing Images in iDigBio to Train Convolutional Neural Networks

Gaurav Yeole, Matthew Collins, Alex Thompson, Renato Figueiredo

iDigBio data and portal

Digitization

Learn, share and develop best practices

Sharing Collections

Documentation on data ingestion

Working Groups

Join in, contribute, be part of the community

United States

1986-02-28

27M+ images stored

Wealth of data; information largely untapped Metadata available; image processing – human eye+brain

iDigBio storage back-end

- 115+ million specimen records
- 27+ million media records
- 120 terabytes of media files
- Hosted on Ceph Ditributed storage system
- Opportunity: machine learning processing near data

iDigBio Database of Images

GUODA - Global Unified Open Data Access

- Apache Mesos distributed systems kernel
- Apache Spark fast and general engine for large-scale data processing
- Jupyter Notebook Interface for Python and R
- Installed frameworks for deep learning -
 - TensorFlow
 - Keras
 - Theono
 - Caffe

GUODA cluster

Applications of Artificial Intelligence (AI)

- Decision-making
- System Identification and Control
 - Vehicle control, process control, natural resource management
- Pattern Recognition
 - ► Face identification, object recognition, etc.
- Classification
 - Image classification, e-mail spam filtering
- **■** Emerging applications of AI for specimen images?

Use Case - Find Mercury Contamination on Herbarium Specimens

- Mercury salt used to specimens as insecticides
- Mercury marking is visible on the specimens
- Mercury vapor and mercury compounds pose threat to human health.
- Mercury contaminated images can be classified using convolutional neural networks.
- E. Schuettpelz, P. Frandsen, R. Dikow, A. Brown, S. Orli, M. Peters, A. Metallo, V. Funk, L. Dorr. (2017). Applications of deep convolutional neural networks to digitized natural history collections. Biodiversity Data Journal. 5. e21139. 10.3897/BDJ.5.e21139.

Convolutional Neural Networks (CNN)

Accessing iDigBio Images

Spark dataframe of iDigBio media

accessuri	contaminated	image_nparray(acc	cessuri)	vector_image:
nttp://collection	0	[255.0, 216.0	25	[255.0,216.0,255
nttp://collection	1	[255.0, 216.0), 25	[255.0,216.0,255
nttp://collection	1	[255.0, 216.0), 25	[255.0,216.0,255
nttp://collection	0	[255.0, 216.0), 25	[255.0,216.0,255
nttp://collection	0	[255.0, 216.0), 25	[255.0,216.0,255
nttp://collection	0	[255.0, 216.0), 25	[255.0,216.0,255
nttp://collection	1	[255.0, 216.0	25	[255.0,216.0,255
nttp://collection	1	[255.0, 216.0), 25	[255.0,216.0,255
nttp://collection	0	[255.0, 216.0	25	[255.0,216.0,255
nttp://collection	1	[255.0, 216.0), 25	[255.0,216.0,255
nttp://collection	1	[255.0, 216.0), 25	[255.0,216.0,255
nttp://collection	1	[255.0, 216.0), 25	[255.0,216.0,255
http://collection	1	[255.0, 216.0), 25	[255.0,216.0,255
http://collection	0	[255.0, 216.0), 25	[255.0,216.0,255
nttp://collection	0	[255.0, 216.0), 25	[255.0,216.0,255
http://collection	0	[255.0, 216.0	25	[255.0,216.0,255
nttp://collection	1			[255.0,216.0,255
nttp://collection	0	_		[255.0,216.0,255
nttp://collection	0			[255.0,216.0,255
nttp://collection	0	[255.0, 216.0), 25	[255.0,216.0,255

only showing top 20 rows

Image Processing Pipeline

Opportunities for collaboration

Founded in 2002

Focused on researchers and institutions on the Pacific Rim

Open Community of Practice

Engages "Long Tail" science communities

Al-focused high-performance clusters

ABCI – top #5 in/the world; similar system at NCHC, Taiwan

Future Work

- Join specimen metadata from iDigBio with images in dataframes which can serve as image and label pairs to train more exciting deep learning models
- Build another audio signal processing pipeline for existing audio data in iDigBio
- Make this pipeline portable and make it compatible to run on infrastructures such as NSF's XSEDE, AIST's ABCI

Acknowledgements

- Sylvia Orli, Paul Frandsen, Rebecca Dikow, Smithsonian Institution
- iDigBio is funded by grants from the National Science Foundation's Advancing Digitization of Biodiversity Collections Program [DBI-1115210 (2011-2018) and DBI-1547229 (2016-2021)]. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

