Challenges and Obstacles to Digitizing Small Paleontology Collections

Laura Vietti, Ph.D.

Museum & Collections Manager,
Departmental Scientific Collections,
Geology and Geophysics

University of Wyoming Fossil Vertebrate Collection

Mesozoic Vertebrates (Dinosaurs and Marine Reptiles)

Mesozoic and Paleogene Mammals

University of Wyoming Fossil **Vertebrate Collection**

- 1,100 Genera, ~400 Families, ~150 Orders

Challenges

- Paleo- Related
 - Fossils are extremely variable
 - Adaptive Workflows and Multiple Methods

- Small Collections- Related
 - Limited Personnel
 - Limited Funds

Morphology Pathology Isotopes Tooth Wear

Life Behavior

Morphology Pathology Isotopes Tooth Wear Death/ Decay/ Scavenging

Scavenging
Weathering
Bioerosion
Epibionts
Breakage
Trampling

Life Behavior

Morphology Pathology Isotopes Tooth Wear

Life Behavior

Morphology Pathology Isotopes Tooth Wear

Life Behavior

Morphology Pathology Isotopes **Tooth Wear**

Scavenging Weathering Bioerosion **Epibionts** Breakage **Trampling**

Lithology Orientation Rounding Corrosion

Environment/Rivers/

Sedimentation Rates

Microbes Geology

Geochemistry

Excavation Paleoecology

on

Deformation

Replacement

Field Notes Field Maps

Associations

Maps

Preps/Tools

Fossil Preparation

Storage

Research

Lab Notes
Consolidate
Tools

Location Method Loans Types Analyses

Fossil Preparation

Storage

Research

Lab Notes Consolidate Tools Location Method Loans Types Analyses

- Morphology
- Pathology
- Micro-wear
- Meso-wear
- Elemental
- Isotopic
- Minerals
- Scavenging
- Bioerrosion
- Corrosion
- Rounding

- Weathering
- Field Notes
- Quarry Map
- Time Period
- Lithology
- Sediment
- Associations
- Field Notes
- Field Map
- Field #
- Preparations

- Lab Notes
- Lab photos
- Lab #
- Preparators
- Storage
- Georeference •
- Identification
- Element Type •
- Holotype?
- Publications
 - Research Lab •

- Loans
- Interactions
- Cast
- File Type
- Consolidants
 - Land Owner
 - Camera Info
 Scanner Info
 - Dates
 - Horizon
 - Determination

Notes

Sorting

Trampling

Orientation

Strike/Dip

Condition?

Breakage

Poses many challenges to consider when attempting to digitize paleo collections?

Poses many challenges to consider when attempting to digitize paleo collections? Complicated Workflow Specimen by Specimen: Adaptive Workflow with several techniques/methods

Poses many challenges to consider when attempting to digitize paleo collections? Complicated Workflow Specimen by Specimen: Adaptive Workflow with several techniques/methods

What do I mean?

Fossilization Process

Fossilization Process

(Variation in Color and Composition)

- Varies across bone, skeleton, assemblage, formation, etc...
- Recording or knowledge of what they are
- Different Backgrounds
- Scanning Artifacts
- Consider important features to capture (iridescence, sutures, diagnostic markings?)

Size Variation

- Extremely Variable
- Dinosaurs to Diatoms
- Matching technology to specimen
- Requires multiple scans/photos
- All the specimen? Part of the specimen?

Shape Variation

- Varies across bone, skeleton, assemblage, formation, etc...
- Extreme Shape variation
- Flat specimens
- How Capture all of it? Do we try?
- 3D scans..stitching

Identification

- Often Difficult
- Not Possible/Diagnostic
- Outdated Nomenclature
- Multiple Specimens
 - Slab
 - Jacket
 - Changes during Prep/research
- Not Linnaean (Morphotypes)

Specimens/Bones/Lots

- How to Best Digitize?
 - Whole Specimen
 - Individual Bones
 - Assemblage?
 - By individual
- Often Changes
 - 3 Femurs identified from one specimen??

Preparations

- Varied Preparation methods and storage methods
- requires consideration when digitizing

Special Features

- Post Death Modifications
 - Cultural: Cutmarks
 - Scavenging: Bitemarks
 - Taphonomic: Weathering
 - Epibionts
- Pathologies
- Other important characteristics

Research

- Holotypes
- Paratypes
- Lithotypes
- Morphotypes
- Analyses noted and Digitized
- Researchers have very different needs and requirements for the specimens...no standardized way

Metadata

- Field Data
 - Notes
 - Maps
 - Photos
- Preparation Data
 - Notes
 - Maps
 - Photos
- Curation Data
 - Photos
 - Card Catalogs
 - Identification Notes
- Research Data
 - Analyses
 - Datasheets

- Color
- Composition
- Size
- Shape
- Identifications
- Specimen/Lot Bones
- Special Features
- Preparations
- Metadata

Complicated Workflow

- Color
- Composition
- Size
- Shape
- Identifications
- Specimen/Lot Bones
- Special Features
- Preparations
- Metadata

Specimen by Specimen: Adaptive Workflow with several techniques/methods

Challenges

- Paleo- Related
 - Fossils are extremely variable
 - Adaptive Workflows and Multiple Methods
- Small Collections- Related
 - Limited Funds
 - Limited Personnel

Digitization Requires Multiple Methods: EXPENSIVE

Obstacle: Cheaply Digitizing (3D Scanning) across multiple scales

Obstacle: Cheaply Digitizing (3D Scanning) across multiple scales

Obstacle: Cheaply Digitizing (3D Scanning) across multiple scales

Obstacle: Cheaply Digitizing (3D Scanning) across multiple scales

Obstacle: Specialized Personnel

- Adaptive workflows
 - Imaging Backgrounds
 - Matching imaging/scanning technique with specimen
 - Adjusting to limit spectral artifacts
 - Knowledge of important features to Digitize
 - Work with a variety of scanning methods and techniques

- Knowledge/Experience
 - Identification of Specimens
 - Software Experience
 - Use of specialized equipment/software

Obstacle: Limited Funds

- LIMITED Specialized Personnel
 - Can work with Adaptive workflows
 - Work with multiple techniques/digitization methods
 - Expensive...few of them
 - Volunteers...requires a lot of training!
 - Volunteer Retention

LIMITED Specialized Equipment

- More than 1 type of imaging/scanning devise
- Expensive! Constraints on Purchasing Power
- Technical Software...or lots of it
- Data Storage Issues

Goal of Digitization in Small Collections?

- Remote Research?
- Search tool for visits?
- Internal Purposes only?>
- Outreach?
- Digitize all or limited # specimens?
- Make it Worth the Effort
- Consider Future Use?
 - What will be important/obsolete 5, 10, 20 years into future

Goal of Digitization in Small Collections?

- Remote Research?
- Search tool for visits?
- Internal Purposes only?>
- Outreach?
- Digitize all or limited # specimens?
- Make it Worth the Effort
- Consider Future Use?
 - What will be important/obsolete 5, 10, 20 years into future

Goal Effects: Level of Effort, Time, Money, Detail

Balance of Resources

Digitization Goals

- •Research? Query
- •Level of Detail?

Fund

- •Imaging/Scanning Units
 - Specialized Training
 - •Data Storage

Personnel

- Adaptive Workflows
- Specialized Training

Worth it!

Archaeotherium mortoni 'Terminator Pig'

Thank you!

Thank you!

Future Vision for Collections> Surface Characterization

Fossils are the MOST Informative Geologic Specimen: So much information.....but so much information

Curation

Use this slide as <u>ALL</u> interior slides.

Environment and evolution through the Paleocene–Eocene thermal maximum

Philip D. Gingerich

Museum of Paleontology and Department of Geological Sciences, The University of Michigan, Ann Arbor, MI 48109 1079, USA

Fossils are the MOST Informative Geologic

Specimen: So much information.....but so much information

Biology Behavior Reproduction Feeding Stable Isotopes

Travel
 Distance

Precipitation

- Environment
- Sedimentation rates
- Aqeous
 Chemistry

University of Wyoming Fossil Vertebrate Collection

Fossil Record 17/45

Mycobacterium tuberculosis Complex DNA from an Extinct Bison Dated 17,000 Years before the Present

Bruce M. Rothschild, 23.4 Larry D. Martin, Galit Lev, Helen Bercovier, Gila Kahila Bar-Gal, Charles Greenblatt, Helen Donoghue, Mark Spigelman, and David Brittain.

'Arthritis Center of Northeast Ohio, Youngstown, "Department of Internal Medicine, Northeastern Ohio Universities College of Medicine, Rootstown, Ohio; 'The Carnegia Museum, Pittsburgh; 'University of Kansas Museum of Natural History, Lawrence, Kansas; 'Department of Bacteriology, Royal Free Hospital and University College London, London; "Veterinary Sciences Division, Department of Agriculture and Rural Development, Belfast; and "Kuvin Center for the Study of Infectious and Tropical Diseases and Ancient DNA, Hadassah Madical School, Hebrew University, Jerusalem

Rothschild, 2003

Fossils are the MOST Informative Geologic

Specimen: So much information.....but so much information

Fossils are the MOST Informative Geologic

Major evolutionary events, 650 million years ago to the present information.....but so much information

Considerations when Digitizing Paleontological Collections

- 50+D...Types of Information
- Purpose of Digitization (Quick Identification, Research, Outreach?)
- Making Efforts Worth It
- Digitize for Future Purposes

All in the context of Small-Collections: Challenges

Fossils are the MOST Informative Geologic

Major evolutionary events, 650 million years ago to the present information.....but so much information

THE THE PART OF TH

Not 3D..Not 4D, but 50+D!

Small Collections have all and concentrated

University of Wyoming Fossil Vertebrate Collection

Mesozoic Vertebrates (Dinosaurs and Marine Reptiles)

Mesozoic and Paleogene Mammals

University of Wyoming Fossil Vertebrate Collection

Collection Specs.

- Started in 1887
- > 40,000 specimens
- 50 Holotypes
- Teaching Collection

Mesozoic

- 10 Collections
- 3 Thesis Collections

Cenozoic

- 46 Collections
- -15 Thesis Collections

Challenges

- Paleo- Related
 - Fossils are extremely variable
 - Adaptive Workflows and Multiple Methods

- Small Collections- Related
 - Limited Personnel
 - Limited Funds

Fossil Preparation

Storage

Research

Lab Notes
Consolidate
Tools

Location Method Loans

Types Analyses

Fossil Preparation

Storage

Research

Major evolutionary events, 650 million years ago to the present

© 2007 Encyclopædia Britannica, Inc.

Lab Notes
Consolidate
Tools

Location Method Loans

Types Analyses

Fossils are not 2D or 3D but 50+D

- Morphology
- PathologyI
- Micro-wear
- Meso-wear
- Elemental
- Isotopic
- Minerals
- Scavenging
- Bioerrosion
- Corrosion
- Rounding

- Weathering
- Field Notes
 - Quarry Map
- Time Period
- Lithology
- Sediment
- Associations
- Field Notes
- Field Map
- Field #
- Preparations

- Lab Notes
- Lab photos
- Lab #
- Preparators
- Storage
- Georeference •
- Identification •
- Element Type •
- Holotype?
- Publications
- Research Lab

- Loans
- Interactions
- Cast
- File Type
- Consolidants
 - Land Owner

Camera Info

Scanner Info

Determination

Dates

Horizon

- Notes
- Trampling
- Sorting
- Orientation
- Strike/Dip
- Condition?
- Breakage

Fossilization Types

Size Variation

- Extremely Variable
- Dinosaurs to Diatoms
- Matching technology to specimen
- Requires multiple scans/photos
- All the specimen? Part of the specimen?

Color Variations

- Varies across bone, skeleton, assemblage, formation, etc...
- Different Backgrounds
- Scanning Artifacts
- Consider important features to capture (iridescence, sutures, diagnostic markings?)

Composition Variation

(permineralization, replacement, films, mold/cast, mummification, etc..)

- Varies across bone, skeleton, assemblage, formation, etc...
- Different Spectral Properties
- Scanning Artifacts
- Recording or knowledge of what they are

Shape Variation

- Varies across bone, skeleton, assemblage, formation, etc...
- Extreme Shape variation
- Flat specimens
- How Capture all of it? Do we try?
- 3D scans..stitching

Identification

- Often Difficult
- Not Possible/Diagnostic
- Outdated Nomenclature
- Multiple Specimens
 - Slab
 - Jacket
 - Changes during Prep/research
- Not Linnaean (Morphotypes)

Specimens/Bones/Lots

- How to Best Digitize?
 - Whole Specimen
 - Individual Bones
 - Assemblage?
 - By individual
- Often Changes
 - 3 Femurs identified from one specimen??

Preparations

- Varied Preparation methods and storage methods
- requires consideration when digitizing

Special Features

- Post Death Modifications
 - Cultural: Cutmarks
 - Scavenging: Bitemarks
 - Taphonomic: Weathering
 - Epibionts
- Pathologies
- Other important characteristics

Research

- Holotypes
- Paratypes
- Lithotypes
- Morphotypes
- Analyses noted and Digitized
- Researchers have very different needs and requirements for the specimens...no standardized way

Metadata

- Field Data
 - Notes
 - Maps
 - Photos
- Preparation Data
 - Notes
 - Maps
 - Photos
- Curation Data
 - Photos
 - Card Catalogs
 - Identification Notes
- Research Data
 - Analyses
 - Datasheets

Complicated Workflow

- Color
- Composition
- Size
- Shape
- Identifications
- Specimen/Lot Bones
- Special Features
- Preparations
- Metadata

Specimen by Specimen: Adaptive Workflow with several techniques/methods

Challenges

- Paleo- Related
 - Fossils are extremely variable
 - Adaptive Workflows and Multiple Methods
- Small Collections- Related
 - Limited Funds
 - Limited Personnel
- Considerations
 - Digitization Goals? Doing it Right? Future Research?

Multiple Digitization Methods

Next-Engine (Laser)

Photogrammetry

Smaller

Larger

Expensive!

Challenge: Digitization Methods for Teeth

Challenge: Digitization Methods for Teeth

Digitization Methods for Teeth

Digitization Methods for Teeth

Specialized Personnel

- Adaptive workflows
 - Imaging Backgrounds
 - Matching imaging/scanning technique with specimen
 - Adjusting to limit spectral artifacts
 - Knowledge of important features to Digitize
 - Work with a variety of scanning methods and techniques

- Knowledge/Experience
 - Identification of Specimens
 - Software Experience
 - Use of specialized equipment/software

Limited Funds

- Specialized Personnel
 - Can work with Adaptive workflows
 - Work with multiple techniques/digitization methods
 - Expensive...few of them
 - Volunteers...requires a lot of training!
 - Volunteer Retention

Specialized Equipment

- More than 1 type of imaging/scanning devise
- Expensive! Constraints on Purchasing Power
- Technical Software...or lots of it
- Data Storage Issues

Compromises

Digitization Goals

- Research? Query
- Level of Detail?

Fund

- Imaging/Scanning Units
 - Specialized Training
 - Data Storage

Personnel

- Adaptive Workflows
- Specialized Training

