Automated shape specification using digital data

Ethan Fulwood

Thinking about Form

- Everything begins with Aristotle (De Partibus Animalium, De Historia Animalium, 350 BC)
 - How does form relate to the function of a structure or an organism?
 - What does form tells us about the natural groups organisms compose?
- Versions of these questions continue to animate the study of functional morphology, systematics, and macroevolution.

Thinking about form

- "Shape description"
 - Shape metrics of hypothesized functional significance
 - Measurements of limb ratios
 - Dental topography metrics
- "Shape specification"
 - Encoding the whole shape of an object
 - Qualitative observation
 - Combinations of linear measurements
 - Shear mapping (D'Arcy Thompson)
 - Geometric morphometrics

Teilhardina asiatica

 M_{I-3}

Case Study —Specifing the paraconid using traditional geometric morphometrics

Problem

Teilhardina asiatica

Automated methods

Advantages

- I. Can be applied to large samples efficiently
- 2. No need to accurately identify "homologous" structures
 - 3. Gives a better accounting of overall shape.

Implementations

- Automated 3D geometric morphometrics (Auto3dgm)
 - Uses "pseudolandmarks" distributed across a surface to align shapes and facilitate the calculation of distances among them (Boyer 2015).
- Diffusion-based segmentation (hecate)
 - Uses point to point similarities between surfaces to probabilistically identify regions of corresponding shape on a sequence of structures.

Steps to auto3dgm

- I. Generating pseudolandmarks
- 2. Initial pairwise alignment
- 3. Construction of a minimum spanning tree
- 4. Permutation and rotation matrices are propagated along the minimum spanning tree to produce transitive alignments

Traditional landmarks vs pseudolandmarks

Traditional landmarks vs pseudolandmarks

Initial pairwise alignment

Construction of a minimum spanning

tree

PCD matrix

Purpose of MST & Propagation

Similar shapes align well

Dissimilar shapes may align incorrectly

PCD = 0.7

All Procrustes distances used to construct initial minimum spanning tree

Purpose of MST & Propagation

Similar shapes align well

Dissimilar shapes may align incorrectly

Incorrect alignments typically have high PCD and won't be in the MST

Purpose of MST & Propagation

Similar shapes align well

Dissimilar shapes may align incorrectly

The MST path can be used to find correct alignments, and recompute distances

MST w initial correspondences

MST w transitive correspondences

Comparison to researcher-based data set

- Sample 106 calcanei
- Data points
 - Observer (27 landmarks)
 - Algorithm (1,024 points)
- Software
 - Morphologika2.5
- Both datasets analyzed identically

From Gladman et al. (2013)

Results

Potential application – Quantifying disparity

Paleobiology, 17(4), 1991, pp. 411-423

Conclusions

Auto3dgm is available for application to your data through an R package ("auto3dgm") and an implemention in Matlab distributed through github.

What about the parts of larger shapes? Can they be identified using automated methods?

Consistent segmentation of biological surface regions

Identify k surface regions across variable shape sample (k is user specified)

Consistent segmentation of biological surface regions

Surface regions reflect local shape similarity

Consistent segmentation of biological surface regions

 Attempt to objectively recognize discrete surface region 'characters'

Segmentation method

 Produces surface point-to-point correspondence maps and mesh-to-mesh distances

Mesh Continuous
Procrustes Distances

	Α	в с	D	
Α		.2	.7	.1
В	.2	.3	.4	
С	.7	.3	.5	
D	.1	.4	.5	

 Produces surface point-to-point correspondence maps and mesh-to-mesh distances

• Possible concern: 'walking' point drifts (diffuses) across combinations of surface maps

 Upside: For regions of local similarity, points walk ('diffuse') in neighborhoods

Diffusion probability matrix

Matrix showing probability of point-to-point diffusion

Diffusion probability matrix

• Matrix comparing all points of all meshes in sample

Diffusion map

- Diffusion map coordinates embed mesh data in new multidimensional space
- Mesh data now similar in form

 Nearness in diffusion map = similarity across original surfaces

k-Means Clustering

 Partition diffusion map coordinates into k groups, translate to original surface coordinates

k-Means Clustering

 Regions reflect local similarity based on probability of walking point 'drift' on surface maps

Segmentation results

- Surface regions (k = 15) capture major features
 - Cusps
 - Basins
 - Side walls
- Surface feature presence/absence important for questions of taxonomy, phylogeny, function, etc.
- Surface regions may be able to provide an objective quantitative criterion for feature presence

Variable among prosimians

- Qualitative characterizations differ, e.g. *Lemur catta*
 - Ni et al.: weakly present
 - Herrera and Davalos: absent

- Sample: 116 prosimian M₂s, 15 segments
- Species-level paraconid presence/absence
- Quantify surface curvature of segment A
 - Dirichlet normal energy
 - Species means
- Compare groups
 - Welch's T test

Donrusselia gallica

Tarsius spectrum

Lemur catta

Mirza coquereli

Qualitative Paraconid Character

Qualitative Paraconid Character

Qualitative Paraconid Character

Potential application – Testing key innovations

Proc. Natl. Acad. Sci. USA Vol. 92, pp. 10718-10722, November 1995 Evolution

The hypocone as a key innovation in mammalian

(adaptive zone/convergent evolution/dentition/diversity/Theria)

