CT BASICS

Computed Tomography

- Overview of algorithm
- Rotation Number
- Common artifacts
 - Sample movement
 - Rotation mismatch
 - Ring artifacts
 - Dead pixels
 - Beam hardening
 - Scattering

- Sample Preparation
- Growing Regions of interest
- Data handling
- Dissemination
 - oVert
 - Morphosource

CT Basics: Difference Between X-ray and CT

- Computed Tomography
 - "Tomos" = Section or slice
- Slices through a 3D density map
- Sequential X-ray Images in Complete Circle
- Computer Algorithm Creates 3D Volume

CT Basics: Difference Between X-ray and CT

- CT Algorithm
 - 2D Projection Gray Values = Attenuation Measurement
 - · Location Specific
 - Values → Stored & Normalized To Others
 - For Every Pixel, Every Image, Whole Circle
 - Back-projection → 2D Cross Section Reconstruction

http://www.asnt.org/publications/Materialseval/basics/may 00 basics/may 00 basics.html and the state of the

Number of rotations

- CT algorithm uses a number of rotated images to reconstruct tomograms
- Each rotation move distal edge a specific distance
- Increasing the diameter of sample increases the travel of distal edge
- Algorithm will struggle to reconstruct the outer areas of the scan
- Increase the numbers of projections per 360° rotation
 - Decreases rotation angle per image
 - Decreases travel at distal edge

Projection number = 1.5 per pixel width

Common issues

- Sample Movement
 - Sample moved during scan
- Center of rotation off
 - Incorrect location information
- Reconstruction seems blurry
 - Can be corrected for during reconstruction but better avoided

Ring artifacts

- Problem:
 - Poorly calibrated detector
- Solution
 - Add detector shift
 - Recalibrate detector Gain

Dead pixels

Dead pixels

- Problem:
 - Dead Pixels in Detector → White or Black Whole Scan
 - Reconstruction → Creates a saw shaped bowl artifact

Planning the scan

- What questions are you asking?
- What measurements will you need to take?
- How many specimens will you need to scan?
- Optimization
 - Resolution
 - · Spatial differentiation
 - Contrast
 - · Density differentiation
 - Noise Factor of Resolution and contrast
 - Speed

Sample preparation

- Maximize the resolution of the scan
 - Square Detector plate
 - Efficient use of space
 - Cylindrical is better
 - Centralized position
 - Multi-scan used for odd shaped samples
- Specimen Must remain perfectly still!
 - Well secured
 - Must not dry out
- Minimize unnecessarily dense material
 - Ziploc bags instead of glass jars
 - Soda bottles and packing peanuts

Sample preparation

- Maximize the resolution of the scan
 - Square Detector plate
 - Efficient use of space
 - Cylindrical is better
 - Centralized position
 - Multi-scan used for odd shaped samples
- Specimen Must remain perfectly still!
 - Well secured
 - Must not dry out
- Minimize unnecessarily dense material
 - Ziploc bags instead of glass jars
 - Soda bottles and packing peanuts

Sample preparation

- Maximize the resolution of the scan
 - Square Detector plate
 - Efficient use of space
 - Cylindrical is better
 - Centralized position
 - Multi-scan used for odd shaped samples
- Specimen Must remain perfectly still!
 - Well secured
 - Must not dry out
- Minimize unnecessarily dense material
 - Ziploc bags instead of glass jars
 - Soda bottles and packing peanuts

Single scans vs Burrito scanning

- Resolution vs throughput
- Increased post-processing to untangle specimens
- How to process Z-stacks?
- Some utility
 - Double scanning Frogs
 - Double output
 - Minimal additional processing
 - Easy to Reconstruct separately
 - No loss of resolution
 - Similar sized, square-ish specimens.

Growing regions of interest

- Segmentation of volume data set
 - 'Regions of Interest' (ROI)
- Visualize individual sections of volume
- · Information of individual sections
 - Volume
 - Size
- Animation and articulation of multiple regions
- Export shapefiles (stl, obj, ply)
 - Morphometric packages

Data Handling

- Archiving
 - Lots of files
 - Large amount of memory (several GB per scan)
 - Files are sensitive to renaming and moving
 - Good idea to have a system in place BEFORE you scan
- Important files
 - X-ray images (raw data)
 - Metadata files (raw data)
 - Tomograms
 - Proprietary Volume files
 - Mesh Files

