Exploring urban biodiversity patterns with iNat data

Misha Leong, California Academy of Sciences mleong@calacademy.org

City Nature Challenge

CITY NATURE CHALLENGE IS ORGANIZED BY

NATURAL HISTORY MUSEUM

mit

CALIFORNIA ACADEMY OF SCIENCES

2	1K	20K	2.5 K
cities	people	obs	species

2017

16 cities took part

- > Austin
- > Boston
- > Chicago
- > Dallas/Fort Worth
- > D.C.
- > Duluth
- > Houston
- > Los Angeles
- > Miami

- > Minneapolis/St. Paul
- > Nashville
- > New York
- > Raleigh
- > Salt Lake City
- > San Francisco

8.6K

species

> Seattle

164Kcitiespeople

125K obs

Urban Homogenization **Hypothesis**

As urbanization intensifies, does biodiversity become more similar?

Are certain taxa more susceptible?

Which species are "winners"

Figure 5. Urban homogenization should lead to a decrease or alteration in surface such that the hydrography of urban ecosystems in these diverse regions are more similar than the hydrography of the native ecosystems that they replaced.

Groffman et al, Front Ecol Envrion, 2014

MRLC National Land Cover Database 2011

NLCD Land Cover Classification Legend

- 11 Open Water
- 12 Perennial Ice/ Snow
- 21 Developed, Open Space
- 22 Developed, Low Intensity
- 23 Developed, Medium Intensity
- 24 Developed, High Intensity
- 31 Barren Land (Rock/Sand/Clay)
- 41 Deciduous Forest
- 42 Evergreen Forest
- 43 Mixed Forest
- 51 Dwarf Scrub*
- 52 Shrub/Scrub
- 71 Grassland/Herbaceous
- 72 Sedge/Herbaceous*
- 73 Lichens*
- 74 Moss*
- 81 Pasture/Hay
- 82 Cultivated Crops
- 90 Woody Wetlands
- 95 Emergent Herbaceous Wetlands

* Alaska only

As urbanization intensifies, does biodiversity become more similar?

- NMDS
 - ex. Is the community composition of highly urbanized Chicago more similar to natural Chicago or highly urbanized Houston?)
- PERMANOVA
 - adonis(formula = all_matrix ~ all_env\$landcover_group, data = all_env, permutations = 999, strata = all_env\$hometown)

All taxa

NMDS1

Stress = 0.156; Procrustes: rmse 5.03e-05; max residual 0.0002

Stress = 0.1977; Procrustes: rmse 0.00836; max residual 0.0378

Stress = 0.133; Procrustes: rmse 0.0031; max residual 0.0135

Most common species

- Divided species by taxa
- Ranked them in order of most to least frequently observed by land use type, nested by city

Over-representation

- 1. Filtered out species found at least 10 times.
- Divided # of times found in each land use type by total # of times found.
- If this proportion was greater than 0.33 + 1 sd, considered it "over-represented)"

Over-representation in high urban

- Birds
 - Columba livia (pigeon)
 - Zenaida asiatica (mourning dove)
 - Passer domesticus (house sparrow)
 - Spinus psaltria (goldfinch)
 - Pica hudsonia (magpie)
- Arthropods
 - Schistocerca nitens (grasshopper)
 - Polistes dominula (European paper wasp)
 - Aphis nerii (oleander aphid)
- Mammals
 - Otospermophilus beecheyi (California ground squirrel)
- Gastropods
 - Cepaea nemoralis (grove snail)

Future work

- Expansion
 - Specialization indices and trait data
 - International comparisons
- Methodology
 - 2016 vs 2017 vs 2018
 - Research grade versus verifiable observations
 - CNC vs general iNat vs GBIF

THANKS!

Misha Leong, California Academy of Sciences mleong@calacademy.org