Biogeography of Polynesian Pteridophytes in a Global Context

Joel Nitta, Alex White, Warren Wagner, & Eric Schuettpelz National Museum of Natural History, Smithsonian Institution

3rd Annual Digital Data Conference \$\square\$ 2019.06.10

https://joelnitta.com

Ever since Darwin...

Islands have been used as "natural experiments" to study evolution.

- Few species
- Many replicates
- Clear hypotheses

natgeoeducationblog.files.wordpress.com

Theory of Island Biogeography

Species richness as a factor of

- island size
- island isolation

media1.shmoop.com

Progression rule

Phylogeny recapitulates geology

Simple progression

Wagner & Funk (1995)

Shaw & Gillespie (2016) Proc Natl Acad Sci USA 113

However...

Most island studies focus on small clades within a single archipelago

... and that archipelago is usually Hawaii

Few studies investigating patterns at **broader scales**, in other archipelagos

- are overrepresented on islands
- play important ecological roles
- need more study

fernsoftheworld.com

- are overrepresented on islands
- play important ecological roles
- need more study

fernsoftheworld.com

- are overrepresented on islands
- play important ecological roles
- need more study

fernsoftheworld.com

- are overrepresented on islands
- play important ecological roles
- need more study

fernsoftheworld.com

Pteridophytes of Polynesia

Pteridophytes of Polynesia

- ca. 413 native spp. total
- 141/182 endemic/native to HI
- 99/251 endemic/native to FP
- only ca. 20 native spp. in common

Goals

Trace dispersal into Polynesia

Model diversification within Polynesia

Goals

Trace dispersal into Polynesia ← Global scale

Model diversification within Polynesia ← Regional scale

Need to assemble a dataset that can be used for both

Data sources

DNA sequence data: GenBank

Occurrence data:

- GBIF
- Floras
- Collections

Data sources

DNA sequence data: GenBank

Occurrence data:

- GBIF
- Floras
- Collections

Four sources of names that need to be harmonized

Taxonomic name resolution strategy

Use Catalog of Life as taxonomic standard

- single taxonomic concept
- 13,994 accepted taxa
- 43,599 synonyms

GenBank and GBIF: exact match on genus + species

Floras and collections: fuzzy match on full scientific name

Drop any records with names that can't be unambiguously resolved

Occurrence data cleaning

- All occurrences of pteridophytes (ferns and lycophytes) on GBIF:
 9,422,314 initial records.
- Use only records with GPS points, identified to extant species: 6,552,924 records kept.
- Remove unusual records with CoordinateCleaner: 6,427,135 records kept.
- Remove records with names that can't be resolved: 6,370,661 records kept.

Phylogenetic analysis

- Download rbcL for all pteridophytes on GenBank*: 11,343 sequences / 5,024 species.
- Resolve names, keep single best sequence per species: 4,150 species.
- Infer phylogeny using maximum likelihood

^{*} gbfetch R package, https://github.com/joelnitta/gbfetch

Biogeographic analysis

- Infer **historical** biogeographic movements: DEC model in BioGeoBears (Matzke 2013)
- Infer **extant** biogeographic structure: GoM model in Ecostructure (White et al. *Nature Comm.*, in press)

Results

GBIF has good taxonomic representation of pteridophtyes

Source	Species	Genera	Families
GBIF data	10789	338	51
Catalog of Life	12996	340	51

How do vouchered records compare to observations? 😌

There are many more observation records, representing fewer species

Observation records are taxonomically skewed

Number of species in GBIF data by source

Mapping realms onto tree reveals NW/OW clades

rbcL genus-level tree. Colors weighted by relative number of species per realm in each genus. Realms after Dinerstein et al. (2017) *BioSci*: 67.

Classification of biological regions faces two challenges

- Either classification must be made a priori
- Or, clustering algorithms only allow for discrete membership

A new method overcomes these challenges

ecostructure (White et al. Nature Comm., in press)

- estimates clusters from the data
- allows for membership in clusters to be continuous

STRUCTURE (Pritchard et al. 2000) uses a similar framework to assign individuals continuously to genetic groups

ecostructure

The data

The model

$$m_{ng} \sim Ber(p_{ng})$$

$$p_{ng} = \sum_{k=1}^{K} \omega_{nk} \, \theta_{kg}$$

$$\sum_{k=1}^{K} \omega_{nk} = 1 \qquad 0 \le \theta_{kg} \le 1$$

ecostructure

A toy example with K = 2

Cluster contribution to species' ranges (omega)

$$m_{ng} \sim Ber(p_{ng})$$

$$p_{ng} = \sum_{k=1}^{K} \omega_{nk} \, \theta_{kg}$$

$$\sum_{k=1}^{K} \omega_{nk} = 1 \qquad 0 \le \theta_{kg} \le 1$$

ecostructure

A toy example with K = 2

Cluster contribution to species' ranges (omega)

$$m_{ng} \sim Ber(p_{ng})$$

$$p_{ng} = \sum_{k=1}^{K} \omega_{nk} \, \theta_{kg}$$

$$\sum_{k=1}^{K} \omega_{nk} = 1 \qquad 0 \le \theta_{kg} \le 1$$

Pacific pteridophytes have affinities with SE Asia

Motif 3

Conclusions

- Single source of names with comprehensive synonymy is key to resolving taxonomy
- Occurrence data are common in GBIF but should be used with caution
- New world / old world splits a common theme in pteridophyte evolution
- Pacific pteridophytes have affinities with SE Asia

Thank you!

Peter Buck Fellowship

Smithsonian Institution DNA Barcode Network

Pacific Tropical Botanical Garden

Jean-Yves Meyer (Délégation à la recherche, FP), Tom Ranker (UH), Ken Wood (NTBG), David Lorence (NTBG), Tim Flynn (NTBG), Greg Plunkett (NYBG), Mike Balick (NYBG), Ann Kitalong (Belau National Museum)

Extra Slides

iNaturalist records not as common as I thought

Top 25 most common sources of GBIF observational records

All pteridophytes. n = 4,891,908 records.

