

An automated image analysis platform for palynological specimens

Surangi W. Punyasena

Department of Plant Biology University of Illinois

Kenton McHenry

National Center for Supercomputing Applications
University of Illinois

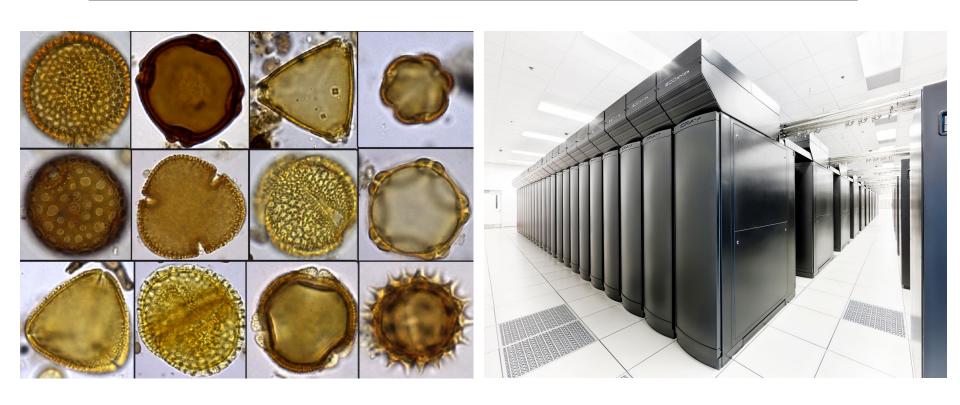
Fossil pollen =

a microscopic census of past vegetation, preserved in geologic sediments

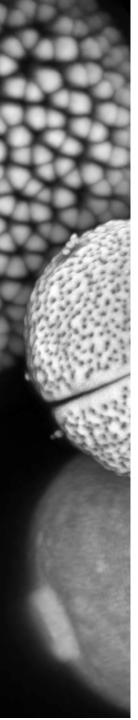
POLLEN APPLICATIONS

Biostratigraphy
Paleoclimate
Paleoecology
Plant evolution
Forensics

POLLEN AS "BIG DATA"

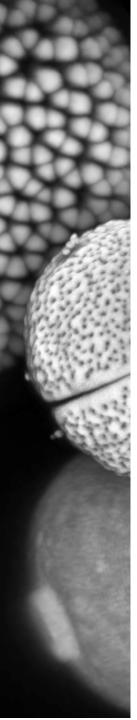


470 million years of plant history
Billions of potential specimens
Continuous deposition across a range of environments



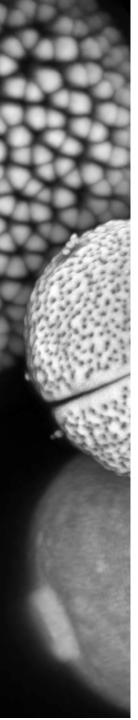
WHAT HOLDS US BACK?

- Limited data acquisition rates
 - Highly specialized skill
 - Counting methods unchanged for ~100 years
- No formal mechanisms for evaluating identification accuracy and consistency
 - Dependent on qualitative descriptions
 - No estimates for identification confidence
 - Uncertainty cannot be propagated
- Variable taxonomic precision
 - "Lowest common denominator" identifications
 - Species identifications often rare or absent
 - Limits ecological and evolutionary interpretation



WHAT HOLDS US BACK?

- Limited data acquisition rates
 - Highly specialized skill
 - Counting methods unchanged for ~100 years
- No formal mechanisms for evaluating identification accuracy and consistency
 - Dependent on qualitative descriptions
 - No estimates for identification confidence
 - Uncertainty cannot be propagated
- Variable taxonomic precision
 - "Lowest common denominator" identifications
 - Species identifications often rare or absent
 - Limits ecological and evolutionary interpretation



WHAT HOLDS US BACK?

- Limited data acquisition rates
 - Highly specialized skill
 - Counting methods unchanged for ~100 years
- No formal mechanisms for evaluating identification accuracy and consistency
 - Dependent on qualitative descriptions
 - No estimates for identification confidence
 - Uncertainty cannot be propagated
- Variable taxonomic precision
 - "Lowest common denominator" identifications
 - Species identifications often rare or absent
 - Limits ecological and evolutionary interpretation

DATA QUANTITY

How do we transform pollen analysis into a higher-throughput "big data" discipline?

DATA REPRODUCIBILITY

How do we improve the consistency and accuracy of pollen identifications?

TAXONOMIC RESOLUTION

How do we discriminate among morphologically similar taxa?

DATA QUANTITY

How do we transform pollen analysis into a higher-throughput "big data" discipline?

DATA REPRODUCIBILITY

How do we improve the consistency and accuracy of pollen identifications?

TAXONOMIC RESOLUTION

How do we discriminate among morphologically similar taxa?

DATA QUANTITY

How do we transform pollen analysis into a higher-throughput "big data" discipline?

DATA REPRODUCIBILITY

How do we improve the consistency and accuracy of pollen identifications?

TAXONOMIC RESOLUTION

How do we discriminate among morphologically similar taxa?

AUTOMATED POLLEN CLASSIFICATION WORKFLOW

Slide imaging

Image segmentation

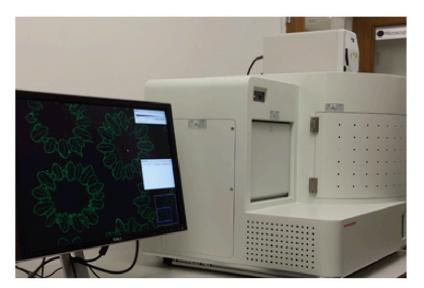
Taxonomic classification

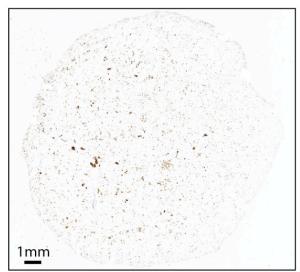
Charless Fowlkes (UC Irvine)

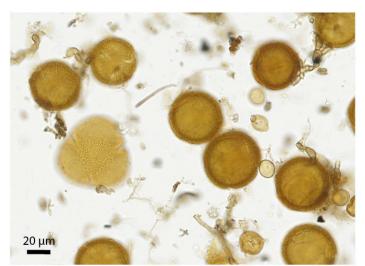
Shu Kong (UC Irvine)

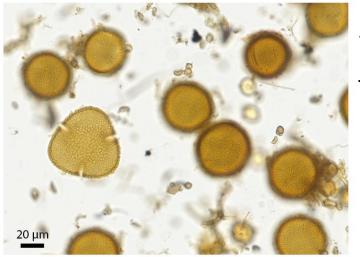
Derek Haselhorst (U Illinois)

AUTOMATED IMAGING / VIRTUAL SLIDES









400x, 0.23 µm/pixe

One sample (41 @ 1 μ m axial planes) = ~400 GB

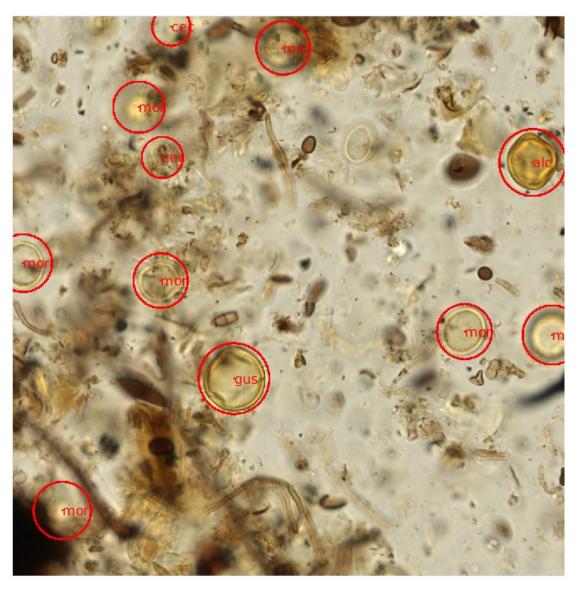
EXPERT ANNOTATIONS

PNG image stacks randomly subsampled

Subsample windows viewed with virtual microscope by expert

 Metadata tagged for each grain: taxon, ID confidence, coordinates, radius, slide info

EXPERT ANNOTATIONS



One of 41 planes of view

SEGMENTATION & CLASSIFICATION

Annotated images divided into a training set (70%) and a validation set (30%)

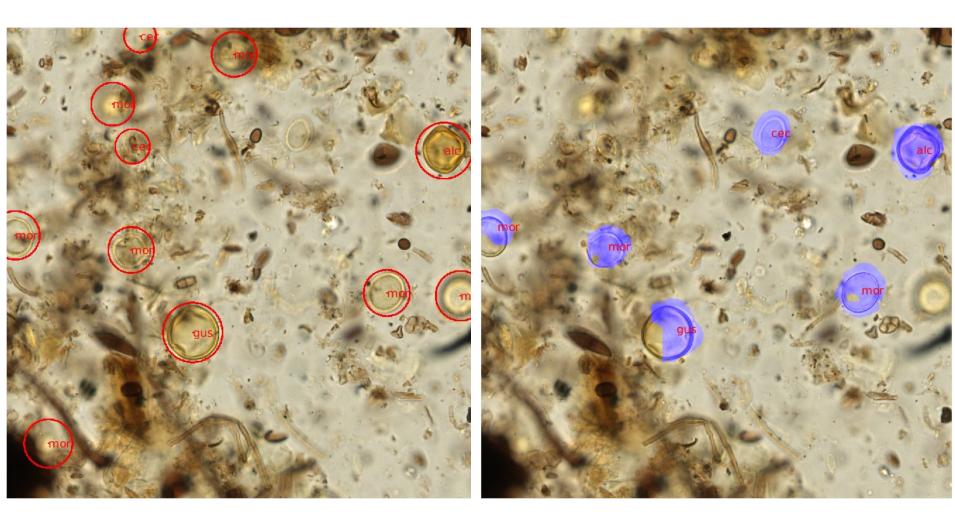
Data augmentation by randomly flipping and rotating images (~2,000 images per pollen type)

Fine-tune pre-trained convolutional neural net (CNN) (Alexnet) (Krizhevsky et al, 2012)

Utilize the radius information to train segmentation masks

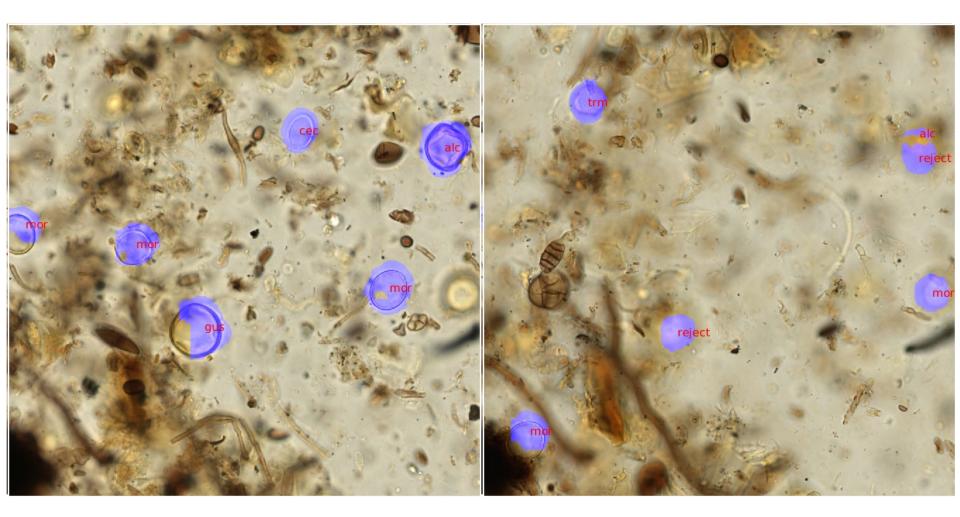
Non-maximum suppression used to identify pollen grains

SEGMENTATION & CLASSIFICATION



Human Machine

SEGMENTATION & CLASSIFICATION



Machine (plane 0)

Machine (plane +20)

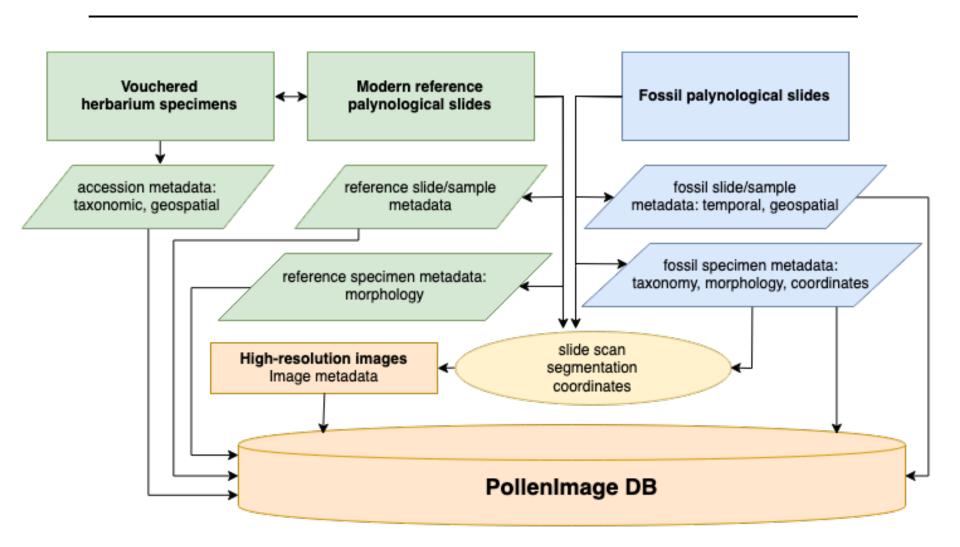
CLASSIFICATION RESULTS

87.25% accuracy for 25 most common/distinctive types

									со	nfusio	on ma	trix o	n tes	t set (acc=8	37.25	%)								
als	0.77	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.19
ant	0.08	0.62	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.21	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.08
cas	0.00	0.00	0.75	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.11	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.04	0.00	0.00	0.00	0.04
cec	0.00	0.00	0.00	0.86	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
cor	0.00	0.00	0.00	0.00	0.89	0.00	0.05	0.00	0.00	0.00	0.03	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02
fic	0.00	0.00	0.00	0.05	0.00	0.71	0.00	0.00	0.00	0.00	0.00	0.00	0.05	0.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
fra	0.00	0.00	0.00	0.00	0.00	0.00	0.94	0.00	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.00	0.00	0.00	0.00
hir	0.00	0.00	0.00	0.00	0.03	0.00	0.00	0.79	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.08	0.00	0.00	0.00	0.05	0.00	0.00	0.00	0.00
hyr	0.00	0.00	0.01	0.00	0.01	0.00	0.00	0.00	0.95	0.00	0.00	0.00	0.02	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
lae	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
lue lue	0.00	0.00	0.00	0.00	0.07	0.00	0.02	0.00	0.00	0.00	0.91	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
round-truth label	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.01	0.97	0.00	0.00	0.00	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
mic mic	0.00	0.00	0.02	0.01	0.00	0.01	0.00	0.00	0.03	0.00	0.00	0.00	0.83	0.11	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00
mor	0.00	0.00	0.00	0.10	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.88	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5 oen	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.03	0.87	0.06	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ply	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.03	0.01	0.01	0.00	0.00	0.07	0.87	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
qua	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.99	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
sim	0.02	0.02	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.88	0.00	0.00	0.00	0.00	0.00	0.00	0.05
slo	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.14	0.00	0.00	0.00	0.00	0.79	0.00	0.00	0.07	0.00	0.00	0.00
tab	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.94	0.00	0.00	0.00	0.00	0.00
tch	0.00	0.00	0.15	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.80	0.00	0.00	0.00	0.00
unc	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.06	0.11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.83	0.00	0.00	0.00
vir	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04	0.00	0.00	0.89	0.04	0.00
vra	0.00	0.00	0.00	0.00	0.00	0.00	0.04	0.00	0.08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04	0.00	0.00	0.00	0.76	0.08
zna	0.06	0.01	0.01	0.00	0.01	0.00	0.00	0.00	0.03	0.00	0.00	0.00	0.00	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.00	0.83
	als	ant	ැත්	æc	O	éic.	40	rit	44	136	me	4c	mic	mot	oen	PH	drig	sim	310	Kalo	427	JUC	lic.	1/3	100
												pred	icted	abel											

the next step

WORKFLOW FOR LARGE-SCALE IMAGING AND ANALYSIS



Alex Antonelli (Kew)

Carlos Jaramillo (Smithsonian Tropical Research Institute)

Alex Antonelli (Kew)

Kew Royal Botanic Gardens

- 40,000 slides/pollen residues
- ~7,000,000 herbarium specimens (unique species and cultivars)

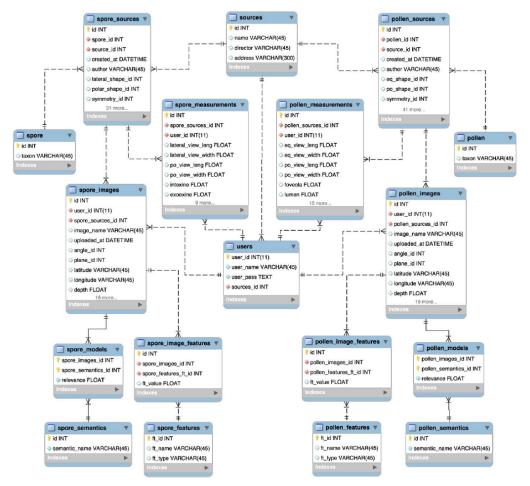
Smithsonian Tropical Research Institute

- 25,000 species, Alan Graham pollen reference collection (historic slides)
- Smithsonian Pollen Database

Carlos Jaramillo (Smithsonian Tropical Research Institute)

Smithsonian Pollen Database

Fossil specimens and morphological descriptions



PARTNERSHIP WITH NCSA

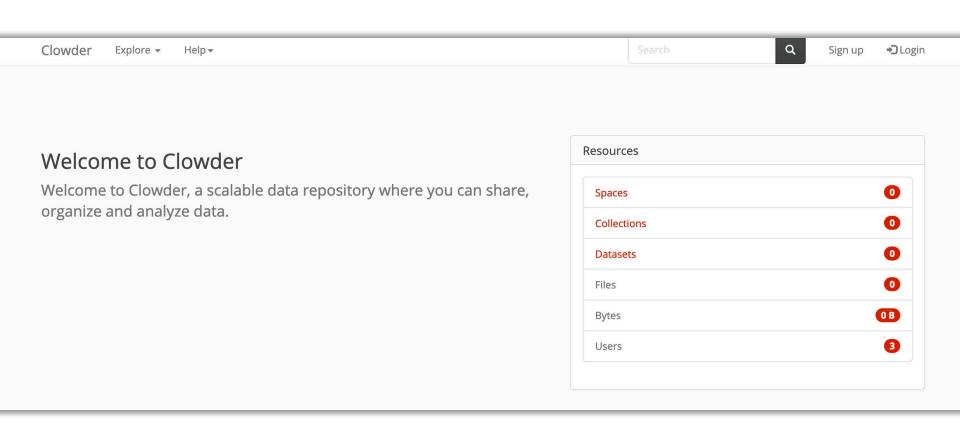
Kenton McHenry (Principal Research Scientist) (Senior Programmer)

Luigi Marini

Rob Kooper (Senior Programmer)

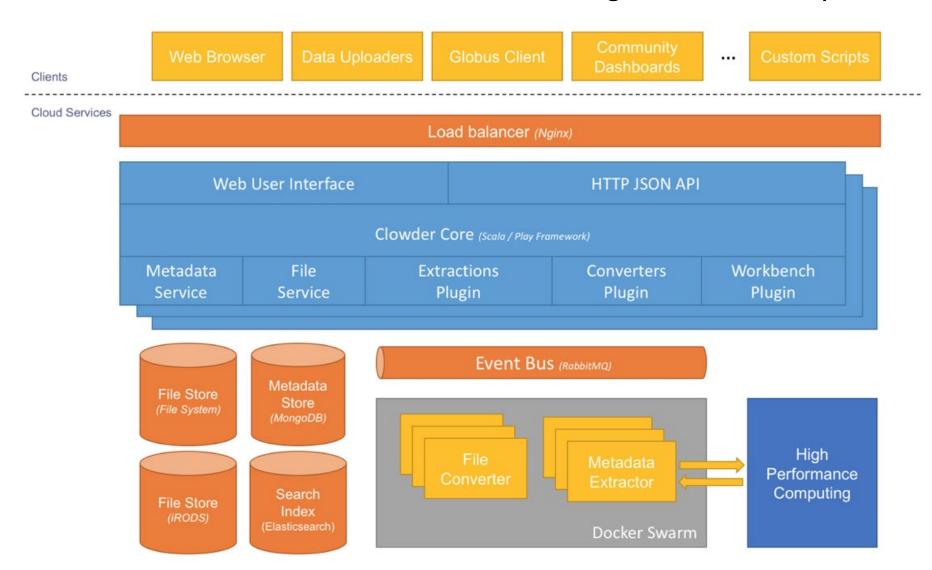
CLOWDER (NCSA)

customizable web interface for data ingestion and analysis



CLOWDER (NCSA)

customizable web interface for data ingestion and analysis



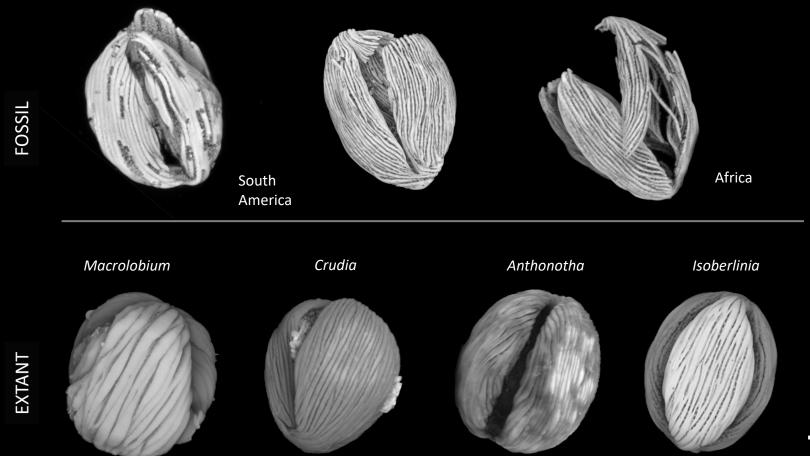
other workflows

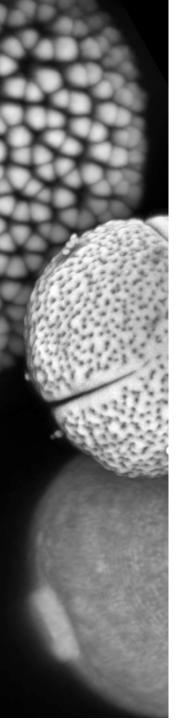
Ingrid Romero (U Illinois)

Charless Fowlkes (UC Irvine)

Shu Kong (UC Irvine)

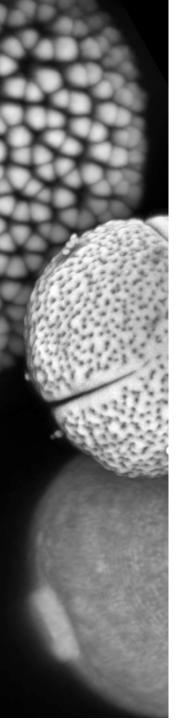
Putative Detarioideae legume – *Striatopollis catatumbus*





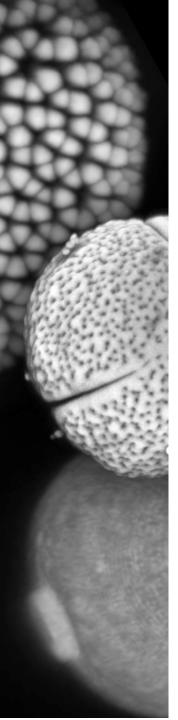
CONCLUSIONS

- Automation of pollen counts possible
 - Consistent segmentation
 - High accuracy for common, distinct types
 - Model performance poorest on morphologically similar and rare types
- Clowder will allow us to efficiently scale up our analytical pipeline
 - Intuitive interface for non-programmers
 - Real-time analysis and updates
- Accuracy should improve with larger and more balanced image training sets
 - CNNs can generalize from reference images
 - Need high quality images of vouchered, expertly identified specimens!



CONCLUSIONS

- Automation of pollen counts possible
 - Consistent segmentation
 - High accuracy for common, distinct types
 - Model performance poorest on morphologically similar and rare types
- Clowder will allow us to efficiently scale up our analytical pipeline
 - Intuitive interface for non-programmers
 - Real-time analysis and updates
- Accuracy should improve with larger and more balanced image training sets
 - CNNs can generalize from reference images
 - Need high quality images of vouchered, expertly identified specimens!



CONCLUSIONS

- Automation of pollen counts possible
 - Consistent segmentation
 - High accuracy for common, distinct types
 - Model performance poorest on morphologically similar and rare types
- Clowder will allow us to efficiently scale up our analytical pipeline
 - Intuitive interface for non-programmers
 - Real-time analysis and updates
- Accuracy should improve with larger and more balanced image training sets
 - CNNs can generalize from reference images
 - Need high quality images of vouchered, expertly identified specimens!

Much of the necessary computational infrastructure already exists

Ultimate bottleneck is in the availability of well-curated, high-resolution images

COLLABORATORS AND FUNDERS

David Tcheng

Illinois Informatics Institute, NCSA

Glenn Fried & Mayandi Sivaguru

Institute for Genomic Biology, UIUC

Enrique Moreno

Smithsonian Tropical Research Institute

NSF-DBI – Advances in Biological Informatics NSF-DBI – Innovations in Biological Imaging & Visualization

NSF-EF – Macrosystems Biology

National Center for Supercomputing Applications (NCSA)

U Illinois Campus Research Board

