

Image analysis of modern and fossil plant silica bodies (phytoliths): Unlocking the evolution of grasses and grassland ecosystems

Caroline A.E. Strömberg

Department of Biology & Burke Museum University of Washington Seattle, WA

Grasslands are ecologically vital

· Grassy biomes make up >40% of Earth's land surface

When and how did grassland ecosystems come to be?

- When did the grass family first originate and diversify?
- When did open-habitat grasses diversify and become ecologically dominant?

The grass family (Poaceae)

 Open-habitat habit evolved twice within Poaceae

(after GPWG 2001, Sanchez-Ken et al. 2007)

Direct evidence for past grasslands

·Grass mesofossils and pollen are rare until the late Miocene—and often hard to interpret taxonomically

Phytoliths (plant silica)

Phytoliths

 Taxonomically useful within the grass family (Poaceae)

Phytoliths

 Taxonomically useful within the grass family (Poaceae):

> Diversification of ancient grass lineages

Ecology of past grass communities

2007)

Anomochlooideae Pharoideae Puelioideae **CLOSED** habitat Bambusoideae Common Oryzoideae ancestor of Poaceae BOP Pooideae **OPEN** habitat (temperate) Aristidoideae Danthonioid. Arundinoideae **OPEN** Chloridoideae habitat (tropical) Centothecoid. Panicoideae (after GPWG 2001. Micrairoideae Sanchez-Ken et al.

Radiation of open-habitat grasses

 Fossil phytolith morphotypes (Americas, Eurasia):

→ Open-habitat grasses diversified by 40 Ma

Grassland evolution in North America

- Earliest (early Miocene) grasslands were dominated by cool-temperate stipoid pooids
- Tropical, dryadapted (C₄) chloridoids spread during the latest Miocene

Phytoliths (+cuticle) from Late
 Cretaceous dinosaur coprolites and
 sediment, central India
 Prasad et al. (2005, 2011)

- Phytolith characters (distribution, shape) from modern grasses in combined molecularmorphological phylogenetic analysis
- Dating of phylogeny using the Late K phytoliths

Needed: Analysis of how phytolith shape maps onto the grass phylogeny

Grass silica short cell phytoliths (GSSCP)

Inadequate current GSSCP shape keys

 Problem 1: Qualitative or semi-quantitative, 2-D descriptions of GSSCP morphotypes

Inadequate current GSSCP shape keys

 Problem 1: Qualitative or semi-quantitative, 2-D descriptions of GSSCP morphotypes

"saddle-shaped"

Chloris

Sinobambusa

Dry-adapted, C₄ open-habitat grass

Mesophytic, tree-forming C₃ bamboo

Inadequate current GSSCP shape keys

- Problem 2: Outdated grass taxonomy
- ·Recent phylogenies have dramatically changed understanding of Poaceae relationships

Creating a phylogenetic key to grass phytolith shape

Team GRASS:

Postdoc: Tim Gallaher

Grad students: Camilla Crifò, William Brightly **Undergraduates:** Anna Schorr, Nik Pershing, Elie Aboulafia, Brittany McManus, Casey O'Keefe, Ashly Senske, Claire Marvet, Brian Connor, Sultan Akbar

Creating a phylogenetic key to grass phytolith shape

Goals:

- Measure 3-D shape of GSSCPs using geometric morphometrics
- Map 3-D shape onto current phylogeny
- Correlate with ecological and physiological characters

- → Trace evolution of GSSCP shape and size across Poaceae
- → Establish GSSCP shape/size diagnostic of particular clades/ecologies/ physiologies

- 1. Phytoliths consists mainly of SiO₂ (66–91%), organic carbon OC (1–6%), H₂O (0–11%), Al (0.01–4.55%), and Fe (0–2.1%)
- → Phytoliths do not auto-fluoresce
- → The outer surface of phytoliths does not readily stain—or stain evenly (e.g., FITC)

Developing phytolith

(Neethirajan et al. 2009)

GSSCP phytoliths are small (~7-40 micrometers)

→ Resolution of e.g., micro-CT (100-200 micrometers) is not fine enough

3. Most grass species make >>1 type of GSSCPs

Anomochloa marantoidea

→ GSSCPs have to be studied like assemblages

4. Similar GSSCP shapes can be oriented differently in the tissue in different species

→ GSSCPs have to be studied in situ

Taxa sampled:

- >200 grass genera from all Poaceae subclades
- Leaf material

Data collected:

Orientation and distribution

of GSSCP shape

Data collected:

- Orientation and distribution of GSSCP shape
- Relative abundances of GSSC types in GSSCP assemblages extracted from leaves

Data collected:

- Orientation and distribution of GSSCP shape
- Relative abundances of GSSC types in GSSCP assemblages extracted from leaves
- 3-D shape within each GSSCP type using confocal microscopy of extracted GSSCPs

3-D data workflow: Image acquisition

 Detailed workflow protocol to ensure consistency Protocols for imaging 3D Phytoliths - Stromberg Lab.
Updated: Feb. 8, 2017

Making Slides for Confocal Microscopy LABELING

 Label microcentrifuge tubes (1-8 or A-H, etc...) and write sample information in the project notebook

STAINING/MOUNTING

- . Gently vortex vials with extracted phytoliths (in 95% ETOH).
 - Allow particles to settle (about 5 min).
 - With a (p1000) micropipette remove 200 microliters (ul) of solution from the bottom of the glass vial and add it to a 0.7 ml microcentrifuge tube.
 - . Spin an even number of tubes in the microcentrifuge for 5 min.
 - · Pipette out and discard supernatant.
- . Add 200 ul of 10% detergent solution (Wash1)
 - . Shake on vortexer (set at 6) with microtube attachment for 10 min.
 - . Spin for 5 min. Pipette out and discard supernatant.

3-D data workflow: Image processing and analysis

- Use 3-D surface meshes to calculate measures of size such as length, width, height, surface area and volume
- Transform and align meshes using Procrustes superimposition to remove size

3-D data workflow: Image processing and analysis

- Use 3-D surface meshes to calculate measures of size such as length, width, height, surface area and volume
- Transform and align meshes using Procrustes superimposition to remove size

3-D data workflow: Outcomes

- Quantified shape for morphometric analysis and phylogenetic mapping
- Animations and 3-D printable objects

Anomochloa marantoidea

Preliminary results

• Counts and confocal images of 3-D shape of GSSCPs for the Oryzoideae, Bambusoideae and early-diverging grasses

Problems encountered so far

Finding stains that stain all of and only the GSSCPs

Rough mesh before smoothing algorithms have been applied

Oryza

Pharus

Problems encountered so far

Finding stains that stain all of and only the GSSCPs

Solutions:

- 1. Tinkering with filters and brightness thresholds in the imaging software to get rid of "holes" and smooth surface
- 2. Manual removal of "debris"

3. Development of a new stains in the form of hybridization

probes specific to silica

Mehmet Sarikaya aterials Sciences & Engineering University of Washington

Problems encountered so far

- Processing time for Procrustes analysis for meshes prohibitive
- Finding the ideal way to analyze 3-D data

Solutions:

- 1. Find optimal number of vertices in meshes
- 2. Landmark-free algorithms? (e.g., Pomidor et al. 2016)

Sharing data

 Online platform where people can use phylogenetic key, download images, videos, printable models etc. (= Morphobank?)

Conclusions

- GSSC phytoliths contain shape data that are phylogenetically relevant
- Collecting and analyzing these data are complicated by the unique properties of phytoliths
- Stay tuned (and suggestions welcome)!

Acknowledgements

Strömberg Lab

Grad students: Camilla Crifo Will Brightly

Postdocs: Georgina Erra Tim Gallaher

Undergrads & volunteers:

Thien-Y Le
Kim Smith
Ryan Thummel
Nik Pershing
Anna Schorr
Elie Aboulafia
Brittany McManus
Casey O'Keefe
Ashly Senske
Erin Sofonowski
Claire Marvet
Sultan Akbar

Collaborators

Vandana Prasad
Dhananjay Mohabey
Ashok Sahni
Adam Leaché
Sue Hartley
Erika Edwards
Colin Osborne
Pascal-Antoine Christin
Elizabeth Kellogg
C4 Grasslands Working Group
Doris Barboni
Rosa Maria Albert
Katharina Neumann
Luc Vrydaghs
Rich Kay

Funding

RRF

Part II: Problems encountered so far

Finding stains that stain only and all of the GSSCPs

Isolated GSSCP

Pharus