

Imaging Critters Why and How?

Prof Graham Galloway

National Imaging Facility

National Imaging Facility

Drosophila 3D High Resolution Imaging

4 slices from the 3D data

Method : Gradient Echo 3D

FOV : $(4.2 \times 2.1 \times 2.1) \text{ mm}^3$

Matrix : 256 x 128 x 128

Resolution : 16.4 µm isotropic voxel

TR : 50 ms
TE : 5 ms

Averages : 24

 T_{exp} : 5h 27 min

Drosophila Chemical Shift Selective Imaging

Method

: Chemical Shift Selective

Gradient Echo 3D

FOV

: (3.2 x 2.2 x 2.2) mm³

Matrix : 64 x 64 x 64

Resolution : $(50 \times 34 \times 34) \mu m$

TR : 50 ms TE : 2.1 ms

Averages : 4

 T_{exp} : 13 min.

Water

Courtesy of B. Simon, A. Teleman, S. Cohen, M. Sattler, EMBL, Heidelberg

Drosophila 3D High Resolution Imaging

After the oral application of contrast agent

Magnevist GdDTPA

Courtesy of Christian Spenger, Johanna Öberg, Karolinska Institut, Stockholm and Fiona Kerr, University Collage, London

Drosophila Fly iv vivo

Magnevist plus apple juice

Five 3D SpinEcho experiments,

Started after 70 minutes respectively,

Matrix: 128 x 96 x 96

FOV: 4.6 x 2.3 x 2.3 mm

Res: 36 x 24 x 24 mm, TR: 100 ms,

TE: 2.35 ms, Averages: 4,

Time 60 min. for each 3D experiment

movie

CT scan of a deep sea fish: Melanocetus johnsoni, anglerfish "Black Devil"

X-ray source with the voltage set to 50 kV and the current set to 150 μ A. The scans were performed using 360° rotation with 360 rotation steps with a high magnification and a binning factor of 2. The exposure time was 2 x 3250 ms with an effective isotropic voxel size of 17 μ m. The total scanning process took approximately 2hr30min.

CT scan of a Melamphaidae: "Big scale fish"

X-ray source with the voltage set to 60 kV and the current set to 300 µA. Isotropic voxel size of 53 µm. The total scanning process took 35 min.

CT scan of a Myctophid: "lantern fish"

Lantern Fish

Mouse spine

X-ray source with the voltage set to 80 kV and the current set to 270 μ A. The scans were performed using 360° rotation with 360 rotation steps with a medium-high magnification and a binning factor of 2. The exposure time was 1400 ms with an effective isotropic voxel size of 27.9 μ m. The total scanning process took approximately 20 minutes.

a

What time of year was it captured? Don't kow! NEED?

Is it any use to a collection?

I DOUBT IT!!!

CT: JM6385_Low_bin2_80KV_500uA_2beds_DSF1_v1 ct I 2014-Sep-29, JM6385_Low_bin2_ 15:34.19, JM6385_Low_bin2_

Growth rates and erosion of Montastraea corals from Belize

X-ray source with the voltage set to 80 kV and the current set to 500 μ A. The scans were performed using 360° rotation with 180 rotation steps with a low magnification and a binning factor of 4 with beam hardening correction. The exposure time was 170 ms with an effective isotropic voxel size of 106 μ m. The total scanning process took approximately 10 minutes.

-Getting data to Compute

(from scanners and to clusters/cloud)
1 run == 2TB temporary data, 400GB output

- Long term archiving/retrieval (keeping things in sync)
- Capturing Meta Data
 Research Data Australia
- -Re-analysing data

CharacterisationVL

Research Environments for **Exploring Inner Space**

FUNDED BY

STORAGE BY

HOSTED BY

National Imaging Facility

The National Imaging Facility: Exploring Inner Space

NIF Infrastructure

Exploring Inner Space

Wholebody 7T MRI
Preclinical comb. MR/PET
9.4T MRI animal system

Small animal PET/CT
Small animal 16.4T MRI
Wholebody 3T MRI

Re Ra

Research Cyclotron Small animal & primate brain PET Radiochemistry hotcells & synthesis units 3T MRI Small animal PET/SPECT/CT, PET/CT & CT

9.4T MRI animal system
Wholebody 3T MRI
Siemens CT & PET scanners

Biolum/fluroescence imaging Faxitron X-ray system Small animal ultrasound

11.7T MRI scanner7T MRI scanner

4.7T MRI scanner3TMRIInformatics capability

Specialises in Large Animals Angiography suite/image intensifer Hologic Dual X-Ray Absorptiometer Wholebody 1.5T MRI

316 channel MEG system Wholebody 3T MRI

Small Animal PET/SPECT/CT 3T MRI Informatics capability

Wholebody 7T MRI **Human PET/CT**

9.4T MRI animal system CRI Maestro 2 multispec imager IVIS lumina II multispectral imager Skyscan 1176 in vivo X-ray micro-CT system

- Provide expertise in the area of technology supported by the node;
- Ensure appropriate ethical, radiological & biological clearances;
- Organise education/training programs for potential end-users;
- Facilitate Access & provide advice of research structure & protocols.

- Support the specific technologies;
- Undertake the roles of the Facility Fellows;
- Responsible rolling out enabling technologies to the wider research community;
- Facilitate the collaborative development of technology, thus ensuring that max. benefit is achieved by this opportunity for national collaborative research.

- Developing common platforms & databases of normative data to enable imaging research nationally;
- Responsible for the roll out of an Informatics system to other NIF sites;
- Integration of the NIF with ANDS;
- Databasing & atlasing of large cohorts (n=10,000+);

Large Animal Research & Imaging Facility

State Funding Agreement

ACKNOWLEDGEMENTS

Far too many to mention

CAI - UQ

NIF nodes

Monash - MASSIVE

ANDS

NeCTAR

National Imaging Facility

To find out more about NIF: www.anif.org.au

To subscribe to NIF Newsletter: communications@anif.org.au

Follow NIF on Linked in for news and updates

http://www.linkedin.com/company/national-imaging-facility

