PHENOTYPED

Paula Mabee

June 4, 2018 Second Annual Digital Data in Biodiversity Research Conference: Emerging Innovations for Biodiversity Data

University of California, Berkeley

PHENOTYPED

The Promise7 minMabee and her colleagues at NESCent initiate a
bootcamp with the MOD World. They fall for
semantic phenotypes but are unaware of the perils
ahead.

Missing Link8 minMoving beyond fundamentals, the scientists begin to
use the System's logic on the Phenotyped. Dark
secrets about the genetic bases of phenotypes come
to light and others have ideas to reverse the logic.

Beyond the Observed10 minWhen the scientists attempt to make a syntheticsupermatrix of phenotypes, they realize that they candramatically expand knowledge.

4 The Inter Worried h in predict phenotyp which sp

2

The Promise

7 min

Mabee and her colleagues at NESCent initiate a bootcamp with the MOD World. They fall for semantic phenotypes but are unaware of the perils ahead.

Difficult for machines....

OMIM Query	<u># of records</u>
"large bone"	785
"enlarged bone"	156
"big bones"	16
"huge bones"	4
"massive bones"	28
"hyperplastic bones"	12
"hyperplastic bone"	40
"bone hyperplasia"	134
"increased bone growth"	612

ONLINE Mendelian Inheritance in Man

Discovery impeded

"Find all images of keywords = gill arch or gill arch skeleton"

Results = 0

6

But there are many images of parts of gill arches

From Morphbank [28 May 2018]

MOD world: using ontologies, model organism databases link phenotypes—genes

Semantics provide meaning

part_of: http://purl.obolibrary.org/obo/BFO_0000050 develops_from: http://purl.obolibrary.org/obo/RO_0002202

> Dahdul et al., 2010 Systematic Biology

A (semantic) word is worth a thousand images...

	Gill arch part	Number images
	Basihyal bone	147
	Basibranchial	236
	Ceratobranchial	224
gill arch	<i>f</i> Hypobranchial	110
UB: 0011153	Epibranchial	220
	Pharyngobranchial	92
	Copula	70
	TOTAL	1099

From Morphbank [28 May 2018]

Phenoscape (2007) **Promise:** Find, compare, integrate computable phenotypes

- University of South Dakota
 - Wasila Dahdul
 - Alex Dececchi
- University of Oregon (Zebrafish Information Network)
 - Monte Westerfield
 - Yvonne Bradford
 - Ceri Van Slyke
- Oregon Health & Science University Melissa Haendel

- Center
 - Aaron Zorn (Xenbase)
 - Christina James-Zorn (Xenbase)
 - Virgilio Ponferadda
- California Academy of Sciences David Blackburn
- University of Arizona
- Hong Cui
- Lawrence Berkeley National Labs
 - Chris Mungall

phenoscape.orc

Perils

Lots of resource & software development: phenotype ontologies, annotation software, Knowledgebase (KB), tools

11

Phenotyped: 4,260 species but >1 billion biological specimens in U.S. natural history collections!

		12345	67890	11111 12345	11112 67890	22222 12345	22223 67890	33333 12345									
Steindachnerdion		11110	00000	00000	2100	0 TABLE 1. O	CHARACT	TER STATE	MATRIX USE	d for Phy	LOGENETIC	ANALYS	IS OF THE	PLACEMEN	ST OF B. O	apapretum	
Phractocephalus-Leiarin	s group	11110	00000	00000	0000	0 WIT	hin Pime	ELODIDAE A	ND Brachyple	itystoma. Cl	naracter s	tates des	cribed in	Appendix	1 and tex	t.	
Pimelodus group		11111	11111	00000	0000	0											
Calophysus group		11111	11111	00000	0000	0			12345	67890	1111	1 1	1112 7890	22222 12345	22223 67890	33333 12345	
Zungaro		11111	10000	00000	0100	1											
Sorubim group 11111 10000					2000	1 Steindachner	dion		11110	00000	0000	00 21	000 0	00000	00000	00011	
Platynematichthys		11111	10000	11000	0000	0 Phractocepha	dus-Letar	<i>tus</i> group	11110	00000	0000	00 00	0000 0	00000	00000	00001	
Brachyptatystoma vaille	intu	11111	10000	11111	1100	0 Primelodus gr	oup		11111		L 0000	00 00	0000 0	00000	00000	00000	
B. tigrinum		11111	10000	11121	0011	1 Calophysus g	roup		11111	1 1111	L 0000		0000 0	01110	00000	01201	
B. platynemum		11111	10000	11120	1111	1 Zungaro			11111	10000	0000	0 01	001 2	20000	00000	00010	
B. Jilak D. TABLE 1 (UAPACTER S	TATE MAT	DIV LISED D	OR PUN OC	ENETIC A	NALWIS OF THE	PLACEM	IENT OF R	cababretum	10000	1100	0 20	1001 2	20000	00000	00011	
D. cape TABLE 1. C	HIN PIMELOD	IDAE AND	Brachyblated	toma. Chara	cter state	s described in	Annendi	ix 1 and te	xt.	10000	1110	11 11	000 0	00000	00000	00000	
D. TOUS WITH					erer orde		-penu	+ und to		10000	1111	21 00	1111 1	1000	00000	10010	
Pseudo				1	11111	11112 2	22222	22223	33333	10000	1111	20 11	111 1	11110	00000	11100	
Pagerid			12345	67890	12345	67890	12345	67890	12345	10000	1111	11 11	111 2	21101	11111	01101	
Letahur Steindachnen	lion		11110	00000	00000	21000 0	0000	00000	00011	1000	1111	11 11	111 2	21101	11111	01101	
Phractocepha	lus-Leiarius g	roup	11110	00000	00000	00000 0				1000							
Pimelodus gr	oup	P	11111	11111	00000	00000 0	TABLE	e 1. Char	RACTER STAT	e Matrix	USED FOR	PHYLOG	ENETIC A	NALYSIS OF	THE PLAC	EMENT OF	3. capapret
Calophysus g	roup		11111	11111	00000	00000 0		WITHIN	PIMELODIDA	E AND Brack	hyplatyston	a. Chara	icter state	s described	d in Appe	ndix 1 and	text.
Zungaro	1		11111	10000	00000	01001 2											
Sorubim grou	1D		11111	10000	00000	20001 2				1	12/6	1	11111	11112	22222	22223	33333
Platynematic	hthys		11111	10000	11000	00000 0				1.	2345	07030	12343	67630	12545	67830	12545
a 1 Guine comp Source M	· · · · · · · · · · · · · · · · · · ·	non Bran			man Dr.	on man on B	Steind	lachnerdion		11	.110 0	00000	00000	21000	00000	00000	00011
E I. CHARACIER STATE M	ATRIX USED :	for PHYLC	GENETIC A	NALYSIS OF	THE PLA	DEMENT OF <i>D. a</i>	Phrac	tocephalus-1	<i>eiarius</i> grou	p 11	110 0	00000	00000	00000	00000	00000	00001
WITHIN FIMELODIDAE ANI	5 brachyptaty	sioma, Gha	facter state	s described	in Appe	indix 1 and text	Pimelo	odus group		11	.111 1	1111	00000	00000	00000	00000	00000
		1	11111	11112	22222	22223	- Calop	hysus group	p	11	.111 1	11111	00000	00000	01110	00000	01201
	12345	67890	12345	67890	12345	67890	Zunge	aro		11	.111 1	0000	00000	01001	20000	00000	00010
lachnerdion	11110	00000	00000	21000	0000	00000	- Sorubi	im group		11		0000	00000	20001	20000	00000	00011
tocephalus-Leiarius group	11110	00000	00000	00000	0000	00000	Platyn	iematicninys		11		0000	11000	00000	00000	00000	00000
odus group	11111	11111	00000	00000	0.01	TABLE 1. CHAP	ACTER S	STATE MAT	RIX USED FO	R PHYLOGE	ENETIC AN	ALYSIS O	F THE PL	ACEMENT O	F B. cabai	retum 000	10010
hysus group	11111	11111	00000	00000	01	WITHIN	PIMELOD	DIDAE AND	Brachyplatyste	ma, Chara	cter states	describe	d in App	endix 1 ar	nd text.	000	11100
aro	11111	10000	00000	01001	20				54 5				11			111	01100
im group	11111	10000	00000	20001	20					1	11111	11112	2222	2 2222	3 33	333 111	01101
nematichthys	11111	10000	11000	00000	00				12345	67890	12345	67890	1234	5 6789	0 123	100	01101
yplatystoma vaillantii	11111	10000	11111	11000	00	Steindachnerdion			11110	00000	00000	21000	0000	000 000	00 00	011 000	00001
rinum	11111	10000	11121	00111	11	Phractocephalus-I	eiarius g	roup	11110	00000	00000	00000	0000	000 000	00 00	001 000	10010
llynemum	11111	10000	11120	11111	11	Pimelodus group			11111	11111	00000	00000	0000	000 000	00 00	000 000	00000
amentosum	11111	10000	11111	11111	21	Calophysus group	р		11111	11111	00000	00000	0111	000	00 012	201 0.00	00000
þaþretum	11111	10000	11111	11111	21	Zungaro			11111	10000	00000	01001	2000	000 000	00 00	010	
usseauxii	11111	10000	11111	11111	21	Sorubim group			11111	10000	00000	20001	2000	000 000	00 00	011	
apteridae	00000	00000	00000	00001	00	Platynematichthys	ε		11111	10000	11000	00000	0000	000 000	00 00	000	
lopimelodidae	00000	00000	00000	00000	01	Brachyplatystoma	vaillanti	ü	11111	10000	11111	11000	0000	000 000	00 00	000	
dae	00100	00000	00000	01000	00	B. tigrinum			11111	10000	11121	00111	1100	000 000	00 100	010	
ridae	00000	00000	00000	00001	00	B. platynemum			11111	10000	11120	11111	1111	LO 000	00 111	L00	
						B. filamentosum			11111	10000	11111	11111	2110	1 111	11 011	101	
						B. capapretum			11111	10000	11111	11111	2110	01 111	11 011	101	
						B. capapretum B. rousseauxii			11111 11111	10000 10000	11111 11111	111111 111111	2110	01 1111 01 1110	11 011 00 011	101	
						B. capapretum B. rousseauxii Heptapteridae			11111 11111 00000	10000 10000 00000	11111 11111 00000	11111 11111 00001	2110 2110 0000	01 111 01 111 00 000	11 011 00 011 00 000	101 101 001	

00000 00000 01000 00000 00000 00000 00000 00000 00001 00000 00000 00000

Phenoscape Knowledgebase

12

Anatomy studies

651,660 phenotypes >5,000 taxa 161 studies >20,000 character states

Model organism datasets

309,383 phenotypes 15,447 genes

732,658 anatomical expression 34,731 genes

Phenotyped specimen data

from legacy literature

from images

'born semantic' phenotypes

predicted phenotypes

Missing Link

8 min Moving beyond fundamentals, the scientists begin to use the System's logic on the Phenotyped. Dark secrets about the genetic bases of phenotypes come to light and others have ideas to reverse the logic.

Semantic phenotypes link species & genes

Gene-Phenotype connection

KB is a Hypothesis generator Interoperability yields 100,000's of Gene-Phenotype hypotheses

Mabee et al., 2012

E.g., How did the catfish lose its tongue?

Flathead Catfish; Photo by USFWS, used under Creative Commons License

Find the genes with a similar phenotype Candidate genes

Phenoblast: find the genes with a similar set of phenotypes to a taxon

Reverse: Find the species with a phenotype similar to a gene...

'Candidate species' (195)

including all eels,
some catfish, etc.

voucher specimens
 are in natural
 history collections

Phenotyped natural history specimens automatically linked with genetics

https://celebrating200vears.noaa.gov/datasets/fishcollection/

Beyond the Observed10 minWhen the scientists attempt to make a syntheticsupermatrix of phenotypes, they realize that they candramatically expand knowledge.

E940_BOVIN	MPREDRATW	KSNYFLKIIOLLDI	DYPKCFIVGADNVGSK	OMOQIEMSLEGK-	AVVLM <mark>GKNT</mark> MMRKA	IRGHLENNPALE
RLA0_HUMAN	MPREDRATW	KSNYFLKII <mark>QLL</mark> DI	DYPKCFIVGADNVGSK	QMQQIRMSLRGK-	AVVLM <mark>GKNT</mark> MMRK/	IRGHLENNPALE
RLA0_MOUSE	MPREDRATW	KSNYFLKIIQLLDI	D <mark>YP</mark> KCFIV <mark>GAD</mark> NVGSK	OMOQIEMSLEGK-	AVVLM <mark>GKNT</mark> MMRKA	IRGHLENNPALE
RLA0_RAT	MPREDRATW	KSNYFLKII <mark>QLL</mark> DI	D <mark>YP</mark> KCFIV <mark>GAD</mark> NVGSK	OMOQIEMSLEGK-	AVVLM <mark>GKNT</mark> MMRK7	IRGHLENNPALE
RLAO CHICK	MPREDRATW	KSN YFMK I I OLLDI	DYPKCFVVGADNVGSK	OMOQIEMSLECK-	AVV LM <mark>GKNT</mark> MMRKA	IRGHLENNPALE
RLAO RANSY	MPREDRATW	KSNYFLKII <mark>OLL</mark> DI	D <mark>YP</mark> KCFIV <mark>GAD</mark> NVGSK	OMOQIRMSLRGK-7	VVVLM <mark>GKNT</mark> MMRK7	IRGHLENNSALE
ZUG3 BRARE	MPREDRATW	KSNYFLKII <mark>OLL</mark> DI	DYPKCFIVGADNVGSK	OMOTIRLS LRGK-	AVV LM <mark>GKNT</mark> MMRKA	IRGHLENNPALE
RLAO ICTPU	MPREDRATW	KSNYFLK <mark>IIQLL</mark> NI	D <mark>YP</mark> KCFIV <mark>GAD</mark> NVGSK	OMOTIRLSLRGK-1	IV LM <mark>GKNT</mark> MMRK7	IRGHLENNPALE
RLA0 DROME	MVRENKAAW	KAQYFIKVYELFDI	EF <mark>P</mark> KCFIV <mark>G</mark> A <mark>D</mark> NV <mark>GS</mark> K	OMONIRTSLRGL-1	AVVLM <mark>GKNT</mark> MMRKA	IRGHLENNPOLE
RLA0_DICDI	MSGAG-SKR	KKLFIEKATKLFT?	TYDKMIVAEADFVGSS	OLOKIRKSIRGI-(AV LMCKKIMIRKV	IRDLADSKPELD
4LP0_DICDI	MSGAG-SKR	KNVFIEKATKLFT?	FYDKMIVAEADFVGSS	OLOKIRKSIRGI-(AVLMGKKTMIRK	IRDLADSKPELD
RLA0_PLAF8	MAKLSKQQK	KQMYIEKLSSLIQ(Q <mark>Y</mark> SK <mark>ILIVHY<mark>D</mark>NY<mark>GS</mark>N</mark>	OMASVRKSLRGK-	TILMGENTRIRT	LKKNLQAVPQIE
RLA0_SULAC	<mark>MIG</mark> LAVTTTKK <mark>IA</mark> KW	KADEAVE TEKTK	THETIIIAN IEGFPAD	KLHE IRKKLRGK-I	DIKVIKHNLFNI/	LKNAGYDTK
RLA0_SULTO	<mark>M</mark> RI <mark>M</mark> AVITQERK <mark>IA</mark> KW	KIEEVKELEOKLRI	E <mark>Y</mark> HT <mark>IIIANIEGFP</mark> ADI	KLHDIRKKMRGM-7	AEIKVTKNTLFG17	AKNAGLDVS
RLA0_SULSO	MKRLALALKQRKYASW	KLEEVKELTELIKI	NSNTILIGNLEGFPAD	KLHE IRKK LRGK-1	TIKVTENTLFKI/	AKNAGIDIE
RLA0_AERPE	MSVVSLVGQMYKREKPIPEW	KTLMLRELEELFS)	KHRVVLFADLT <mark>GTPT</mark> F	VVQRVRKKLWKK-	PMMVAKKRIIL <mark>R</mark>	MKAAGLE LDDN
RLA0_PYRAE	-MMLAICKRRYVRTROYPAR	KVKIVSE R TELLQ)	K <mark>YP</mark> YVFLFDLH G LS <mark>S</mark> R:	ILHE YRYRLRRY-(VIKIIKPTLFKI/	FTKVYGGIPAE
RLA0_METAC	MAEERHHTEH IPQW	KKDE IEN IKEL IQ:	S <mark>H</mark> KVF <mark>GMVGIEGI</mark> LATI	KMQKIRRDLKDV-	AVLKVSRNTLTER#	LNQLGET IP
RLA0_METMA	MAEERHHTEHIPOW	KKDE IEN IK <mark>E</mark> L IQ:	SHKVFGMVRIEGILATI	KIQKIRRDIKDV-1	VLKVSRNTLTERA	LNQLGESIP
RLA0_ARCFU	PPEY	KVRAVEE IKRMIS:	SK <mark>PVVAIV</mark> SFRNVPAG	OMOKIRRE FRGK-	AE IKVVKNTLLE RA	LDALGGDYL
RLA0_METKA	MAVKAKGOPPSGYEPKVAEW	KRREVKELKELMDI	EYENVGLVDLEGIPAP	OLOEIRAKLRERD	IIRMSRNTLMRIA	LEEKLDERPELE
RLA0_METTH	MAHVAEW	KKKEVQELHDLIK	GYEVVGIANLADIPAR	OLOKMROT LEDS-	ALI <mark>RMSKKT</mark> LISLA	LEKAGRELENVD
RLA0_METTL	<mark>M</mark> ITAESEHK <mark>IAP</mark> W	KIEEVNKLK <mark>ELL</mark> KI	NGQIVALVDHMEVPAR	QLQEIRDKIR-GT	ATLEMSENTLIER/	IKEVARETGNPEFA
RLA0_METVA	<mark>M</mark> IDAKSEHK <mark>IAP</mark> W	KIEEVNALKELLK:	SANVIALIDHMEVPAV	OLOEIRDKIR-DQ	ATLEMSENTLIKE?	VEEVALETGNPEFA
RLA0_METJA	METKVKAHVAPW	KIEEVKTLKGLIK!	SK <mark>PVVAIV</mark> DHMDVPAP	QLQEIRDKIR-DK	KLRMSRNTLIIR/	LKEAAEE LNNPKLA
RLA0_PYRAB	MAHVAEW	KKKEVEELANLIK:	S YP VIAL V D V S SMP A Y	PLSQMRRL IRENGO	LLRVSRNTLIELA	IKKAAQELGKPELE
RLA0_PYRHO	MAHVAEW	KKEVEELAKLIK:	S <mark>YP</mark> VIALVDVSSMPAY	PLSQMRRL IRENGO	LLRVSRNTLIEL/	IKKAAKELGKPELE
RLA0_PYRFU	MAHVAEW	KKKEVEELANLIK:	S YP VAL VDVS SMPAY	PLSQMRRL IRENN	LLRVSRNTLIEL#	IKKVAQELGKPELE
RLA0_PYRKO	MAHVAEW	KKKEVEELANIIK:	SYPVIALVDVAGVPAY	PLSKMRDKLR-GK	LLRVSRNTLIEL/	IKRAAQELGQPELE
RLA0_HALMA	<mark>MSA</mark> ESERKTET IPEW	KQEEVDAIVEMIE:	SYESVGVVNIAGIPS R	QLQDMRRDLHGT-I	AELRVSRNTLLER/	LDDVDDGLE
RLA0_HALVO	MSESEVRQTEVIPQW	KREEVDELVDFIE:	SYESVGVVGVAGIPSR	OLOSMRRELHOS-I	AAV RMS RNTLVN RA	LDEVNDGFE
RLA0_HALSA	MSAEEQRTTEEVPEW	KRQEVAELVDLLE?	TYDSVGVVNVTGIPSK	QLQDMRRGLHGQ-1	ALRMSRNTLLYR/	LEEAGDGLD
RLA0_THEAC	MKEVSQQ	KKELVNEITORIK	ASRS VAIV D T AGIRTR	OIODIRGKNRGK-	INLEVIERTLLF KA	LENLODEKLS
RLA0_THEVO	MRK IN PK	KKEIVSELAQDITI	KSKAVAIVDIK <mark>G</mark> VR <mark>I</mark> R	MODIRAKNRDK-	KIKVVKKTLLFK/	LDSINDEKLT
RLA0_PICTO	MTEPAQW	KIDFVKNLENE IN:	SEKVAAIVSIKGLENN	EFOKIENS IEDK-	RIKVSRARLLRLA	IENIGKNNIV
ruler	1		40 5	0	70	

By Miguel Andrade at English Wikipedia - Transferred from en.wikipedia to Commons., CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=3930704

Genetic supermatrix

		12345	67890	11111 12345	11112 67890	22222 12345	22223 67890	33333 12345									
Steindachnerdion		11110	00000	00000	2100	0 TABLE 1.	CHARAC	CTER STATE I	MATRIX USE	D FOR PHY	OGENETI	C ANALYS	IS OF THE	PLACEMEN	T OF B. ca	þaþretum	
Phractocephalus-Leiarii	is group	11110	00000	00000	0000		1111111 1 15	MELODIDAE A	CD Drachypa	<i>aysiona</i> . Ci	aracter s	lates ues	mocu m	appendix	i and text.		
Pimelodus group		11111	11111	00000	0000	0				1	1111	1 11	112	22222	22223	33333	
Catophysus group		11111	11111	00000	0000	0			12345	67890	1234	5 67	890	12345	67890	12345	
Zungaro		11111	10000	00000	0100	1 Steindach	nerdion		11110	00000	000	0 21	000 0	0000 0	0000 0	10011	
Soruoim group		11111	10000	11000	2000	Phractocet	halus-Lei	arius group	11110	00000	000	00 00	000 0	00000 0	0000 0	10001	
Prachyblatystoma waille		11111	10000	11111	1100	Pimelodus	group	sioup	11111	11111	000	00 00	000 0	0000 0	0000 0	00000	
Brachypiarysioma valua B tigrinum		11111	10000	11121	0011	11111 11111 00000 00000 00								01110 0	0000 0	01201	
B. tignnum B. tilatynemum		11111	10000	11121	11111	1 Zungaro	- 8 P		11111	L 1000(000	00 01	001 2	20000 0	0000 0	00010	
B. filay		11111	10000	11120		Soruhima	roun		11111	10000	000	00 20	001 2	20000 0	0000	00011	
B. caby TABLE 1. C	HARACTER S	TATE MATE	RIX USED F	or Phylog	ENETIC A	NALYSIS OF TI	HE PLACE	MENT OF B .	capapretum	10000	110	00 00	000 0	0000 0	0000	00000	
B. rous WITH	IN PIMELOD	DAE AND <i>E</i>	Brachyplatyst	oma. Chara	cter state	s described i	n Appeno	dix 1 and te	st.	10000	111	11 11	000 0	0000 0	0000 (00000	
Hentai			~ ~							10000	111	21 00	111 1	1000 0	0000	10010	
Pseudo				1	11111	11112	22222	22223	33333	10000	111	20 11	111 1	1110 0	0000	11100	
Bagrid			12345	67890	12345	67890	12345	67890	12345	10000	111	11 11	111 2	1101 1	1111 (01101	
Ictalur Steindachnero	lion		11110	00000	00000	21000	00000	00000	00011	10000	111	11 11	111 2	1101 1	1111 ()1101	
Phractocephai	us-Leiarius gi	roup	11110	00000	00000	00000	0(^^^										
Pimelodus gro	oup	-	11111	11111	00000	00000	O(TAB	ble 1. Chai	ACTER STAT	e Matrix	USED FOR	PHYLOG	enetic A	NALYSIS OF	THE PLACE	MENT OF	B. c
Calophysus g	roup		11111	11111	00000	00000	01	WITHIN	PIMELODIDA	E AND Braci	yplatyston	<i>ia</i> . Chara	cter state	s described	in Appen	dix 1 and	tex
Zungaro			11111	10000	00000	01001	2(
Sorubim grou	ıp		11111	10000	00000	20001	2(1	345	1 67890	11111 12345	11112 67890	22222	22223 67890	
Platynematick	ithys		11111	10000	11000	00000	0(
CHARACTER STATE M	ATRIX USED 1	FOR PHYLO	GENETIC A	NALVSIS OF	THE PLAC	CEMENT OF B	C(DL	naacnneraion		. 11	110 0	00000	00000	21000	00000	00000	2
WITHIN PIMELODIDAE ANI	Brachyblaty	stoma. Cha	racter state	s described	in Appe	ndix 1 and t	ext p:	actocepnatus-1	<i>etarius</i> grou	p 11	110 0	11111	00000	00000	00000	00000	
							Cal	eloaus group		11	111 .		00000	00000	01110	00000	,
		1	11111	11112	22222	22223	Cau 7	opnysus grou	p	11	111 .	11111	00000	01000	20000	00000	,
	12345	67890	12345	67890	12345	67890	Som	uguro uhim group		11	111	10000	00000	20001	20000	00000	'n
nerdion	11110	00000	00000	21000	00000	00000	Plat	tvnematichthy		11	111	10000	11000	00000	20000	00000	ń
bhalus-Leiarius group	11110	00000	00000	00000	00000	00000	1 100	• • • • • •								~~000	ń
group	11111	11111	00000	00000	00(TABLE 1. CI	HARACTER	STATE MAT	rix Used fo	or Phylogi	ENETIC AP	ALYSIS O	F THE PL	ACEMENT O	F B. сарарі	etum nor	ń
is group	11111	11111	00000	00000	01:	WITH	IN PIMELO	ODIDAE AND	Brachyplatyst	oma. Chara	ter state:	describe	ed in App	endix 1 an	d text.	0.00	6
0 1	11111	10000	00000	01001	20(111	1
group	11111	10000	00000	20001	20(1	11111	11112	2222	2 2222	3 3333	13 111	
atichthys	11111	10000	11000	00000	00(12345	67890	12345	67890	1234	5 6789	0 1234	5 100	
tystoma vaillantii	11111	10000	11111	11000	00(Steindachnerd	ion		11110	00000	00000	21000	0000	0000	000 000	11 007	
m	11111	10000	11121	00111	11(Phractocephali	ıs-Leiarius	s group	11110	00000	00000	00000	0000	0000	000 000	01 007	
emum	11111	10000	11120	11111	11:	Pimelodus gro	up	0 1	11111	11111	00000	00000	0000	0000	000 000	00 00	
utosum	11111	10000	11111	11111	21:	Calophysus gr	oup		11111	11111	00000	00000	0111	LO 0000	0 012	01 007	
etum	11111	10000	11111	11111	21:	Zungaro			11111	10000	00000	01001	2000	0000	000 000	10	
uxii	11111	10000	11111	11111	21:	Sorubim grou	р		11111	10000	00000	20001	2000	0000	000 000	11	
ridae	00000	00000	00000	00001	00(Platynematich	thys		11111	10000	11000	00000	0000	0000	000 000	00	
melodidae	00000	00000	00000	00000	01(Brachyplatysto	ma vaillar	ntii	11111	10000	11111	11000	0000	0000	000 000	00	
	00100	00000	00000	01000	00(B. tigrinum			11111	10000	11121	00111	1100	0000 000	00 100	10	
ne –	00000	00000	00000	00001	00(B. platynemun	n		11111	10000	11120	11111	1111	LO 0000	0 111	00	
						B. filamentosu	m		11111	10000	11111	11111	2110	01 1111	1 011	01	
						B. capapretum			11111	10000	11111	11111	2110	1111	1 011	01	
						B. rousseauxii			11111	10000	11111	11111	2110)1 1110	0 011	01	
						Heptapterida	ie		00000	00000	00000	00001	. 0000	0000 0000	0000 0000	01	
						Heptapterida Pseudopimel	ie odidae		00000	00000	00000	00001	0000	0000 000	00 000	01 10	
						Heptapterida Pseudopimel Bagridae	e odidae		00000 00000 00100	00000 00000 00000	00000 00000 00000	00001 00000 01000	0000	0000 0000 0000 0000 0000 0000	00 000	01 10)0	

	Strengt h of	1	1	Strengt h of	Strengt h of	1	Strengt h of														
Aligat	0	1	0	1	0	0	1	0	1	0	1	1	0	1	0	1	0	0	1	0	1
Alligat	1	0	0	0	1	0	1	1	0	1	1	0	1	0	0	0	1	0	1	1	0
Alligat	0	1	0	1	0	1	0	1	0	0	1	0	0	1	0	1	0	1	0	1	0
Alligat	1	0	1	1	1	0	1	1	0	0	1	0	1	0	1	1	1	0	1	1	0
Alligat	0	0	1	111	0	1	0	1	1	0	1	0	0	0	1	111	0	1	0	1	1
Alligat	1	0	0	0	1	0	0	1	0	0	1	0	1	0	0	0	1	0	0	1	0
Alligat	1	0	1	11	0	1	0	11	0	1	1	0	1	0	1	11	0	1	0	11	0
Alligat	1	0	1	1	1	0	1	111	1	0	1	0	1	0	1	1	1	0	1	111	1
Alligat	1	0	1	1	1	0	111	1	0	0	1	0	1	0	1	1	1	0	111	1	0
Alligat	0	0	1	1	0	1	11	1	0	1	1	111	0	0	1	1	0	1	11	1	0
Alligat or	1	0	1	1	1	0	111	1	0	0	1	0	1	0	1	1	1	0	111	1	0
Alligat	1	0	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1
Alligat	1	0	1	0	0	0	1	1	0	0	1	0	1	0	1	0	0	0	1	1	0
Alligat	1	0	1	1	0	1	0	1	0	1	1	0	1	0	1	1	0	1	0	1	0
Alligat	1	0	111	1	1	0	0	1	1	0	1	1	1	0	111	1	1	0	0	1	1
Alligat	1	0	0	1	1	1	11	1	0	111	1	0	1	0	0	1	1	1	11	1	0
Alligat	1	0	0	1	0	0	1	1	1	0	1	1	1	0	0	1	0	0	1	1	1
Alligat	1	0	1	0	0	1	0	0	1	0	1	0	1	0	1	0	0	1	0	0	1
Alligat	0	0	111	0	1	1	1	0	1	1	1	0	0	0	111	0	1	1	1	0	1
Alligat	1	0	1	1	1	1	1	1	1	1	1	0	1	0	1	1	1	1	1	1	1
Alligat	0	0	1	0	0	111	1	0	1	1	0	1	0	0	1	0	0	11	1	0	1
Alligat	0	0	1	0	0	0	1	0	1	1	0	0	0	0	1	0	0	0	1	0	1
Alligat	1	0	1	1	1	1	1	0	1	1	0	0	1	0	1	1	1	1	1	0	1
Aligat or	0	0	1	1	1	1	1	0	1	1	0	1	0	0	1	1	1	1	1	0	1

Phenotype supermatrix (+/-)

26

 OntoTrace: Software tool that returns +/- synthetic matrices for desired taxa and characters

Dececchi, Balhoff, Lapp, & Mabee (2015) Systematic Biology 64(6), 936-952.

Infer presence, from presence of part

- "Bottom up"
- If part of an entity is present, then the entity is present
- If a species has toe disks, it has digits

digit is present digit manual digit manual digit is present toe disk toe disk is present (Heyer, 1988) 27

Infer presence, from quality of entity

28

- If an entity is asserted to have a quality other than absence, it is present
- E.g., If radials are jointed, they are present

radials jointed

Modified from Shubin et al. 2006

Infer absence, from absence of parent

- "Top down"
- If parent is absent, all children and parts are absent
- If snakes lack limbs, they lack digits

Infer absence, from absence of developmental precursor

- If developmental precursor is absent, entity is absent
- If species lacks limb buds, they lack limbs

from Sears, 2011

Query: "fin, limb, girdle & parts" "Sarcopterygii"

Dececchi, Balhoff, Lapp, & Mabee (2015) *Systematic Biology* 64(6), 936-952.

(Data as of 2018-05-11)

'Synthetic morphological supermatrix'

32

Dececchi, Balhoff, Lapp, & Mabee (2015) *Systematic Biology* 64(6), 936-952.

Inference provides most of the data for this phenotype

Dececchi, Balhoff, Lapp, & Mabee (2015) *Systematic Biology* 64(6), 936-952.

Enabled: Isolation, quantification of data conflicts

							Matrix	Matrix											
Matrix 🖬 🖌 🗙 🔪																xL			
Taxon	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	7			
164 Astylosternus di	?	1	?	?	1	?	?	?	?	?	1	?	?	1	?	21			
165 Ptyonius marshii	?	?	1	?	?	?	?	?	?	?	?	?	?	?	0	1			
166 Gooloogongia	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	47			
167 Pipidae	0	1	1	?	1	?	?	?	?	?	?	?	?	?	0	47			
168 Phrynomantis	?	1	?	?	1	?	?	?	?	?	?	?	?	1	?	47			
169 Baptornis adven	?	1	?	?	1	?	?	?	?	?	?	?	?	?	?	47			
170 Boophis madag	?	1	?	?	1	?	?	?	?	?	1	1	?	0	?	4			
171 Archeria	0	?	1	1	1	?	?	?	?	?	?	?	?	?	1	J.			
172 Phonerpeton pri	?	?	1	?	?	?	?	?	?	?	?	?	?	?	?	4			
173 Osornophryne b	?	?	?	?	1	?	?	?	?	?	?	1	?	?	?	47			
174 Petropedetes ca	?	1	?	?	1	?	?	?	?	?	1	1	?	0 and 1	?	47			
175 Tropidosuchus r	0	1	?	1	1	?	?	?	?	?	?	?	?	?	?	47			
176 Morganucodonti	?	1	1	0	1	?	?	?	?	?	?	?	?	?	?	47			
177 Hemiphractus	?	1	?	?	1	?	?	?	?	?	?	?	?	1	?				
178 Sterropterygion	?	?	1	?	?	0	0	0	?	?	0	0	?	?	?				
179 Euphlyctis cyan	?	1	?	?	1	?	?	?	?	?	1	?	?	1	?				
180 Afrixalus fulvovit	?	1	?	?	1	?	1	?	?	?	?	?	?	1	?	47			
181 Amietophrynus	?	?	?	?	1	?	?	?	?	?	?	1	?	?	?	47			
182 Archeria crassid	?	?	1	1	?	?	?	?	?	?	?	?	?	?	1				
183 Litargosuchus le	?	?	?	?	. 1	?	?	?	0	?	?	?	?	?	?				
184 Kotlassia prima	" 0	?	1	1	?	?	?	?	?	?	?	?	?	?	0				
185 Captorhinidae	2	. 1	. 1	0		2	· ?	?	?	?	?	?	?	?	1				
186 Neldasaurus wri	?	?	1	?	?		?	?	?	?	?	?	?	?	0				
187 Melanophrvnisc	2	. 1	?	?			?	?	?	?	?	?	?		2	4			
188 Archaeotherium	2	1	?	?	1		1	?	?	?	1	?	?	1	2				
189 Proceratophrys	2	?	?	?					. ?	?	?	. 1	?	2	2				
190 Acheloma cum	0	. 2	1	0 and 1					2	?	?	?	?	?	0				
191 Pedernes finney	2	?	1	0 and 1		presence c	& abse	nce	. 2	?	?	?	?	?	1				
192 Rhynchonkos st.	0	?	1	1					?	?	?	1	?	?	0				
192 Thrinaxodon lior	2	- 1	1	0	1		2	2	:	:	:	2	:	:	2				
104 Lemur catta	2	1	2	2	1		1	?	?	0	1	1	?	1	2				
105 Aphydrophryne	:	1	:	:	1		2	:	:	2	1	2	:	1	1				
106 Phrynobetrachu	2	1	2	:	1	2	2	:	2	:	1	:	2	0 and 1	2				
190 Fillyhoballachu	1	1	: 2	: 2	1	2	r 1	: 2	: 2	f O	1	1	: 2	1	1				
197 Tyopsouus paul	:	1	f 2	()	1	2	3	f 2	: 2	2	1	1	· · · · · · · · · · · · · · · · · · ·		2				
198 Cycloramphus I	r 2	1	ſ	ſ	1	1	:	ſ	ſ	ſ	1	1	r O	0	1				
199 Pelobales luscus	1	1	?	{ 	1	: 0	{	: 2	?	: 2	1	1	0		2				
200 Herrerasaurus I	0	1	(1	1	ſ	1	<i>!</i>	U	ſ	1	1	<i>!</i>	(1	7				
201 Notharctus tene	?	1	?	?	1	?	1	?	?	0	1	1	?	1	?				
202 Allobates talam	?	1	?	?	1	?	?	?	?	?	1	1	?	0	?				
203 Apheliscus insid	?	?	?	?	?	?	?	?	?	0	?	?	?	?	?	-			
201 Manie nentadact	20	1	2	2	1	2	1	2	2	1	1	1	2	1					

774 conflicted cells (0.5%) of 146,451 populated cells

Enabled: Phenotype enrichment

35

- Heat map:
 - Cell color reflects number of character states:
 - for each anatomical entity (column)
 - for each taxon (row)
 - Dark blue = empty cells

Sarcoptergyii, fins, limbs, girdles

Dececchi, Balhoff, Lapp, & Mabee (2015) *Systematic Biology* 64(6), 936-952.

Enabled: Large-scale ancestral state reconstruction

Enhancement to sparse data

Jackson, Balhoff, Hanscom, Franando, & Mabee (2018) 36Systematic Biology doi.org/10.1093/sysbio/syx098

Potential: scale up phenotypic data to drive genomic discoveries

Figure 2. A Forward Genomics Screen to Match an Ancestral Presence/Absence Trait Pinpoints Gulo Inactivation in Vitamin C-Nonsynthesizing Species

37

The Intermediary

3 min

Worried humans reached out to the Machine for help in predicting climate change. Cleverly connecting phenotype with collection data, It told the humans which species would be likely to win the competition.

PHENOTYPED

■ Help me…

- * Related taxa with similar phenotypes from dissimilar environments
- * Unrelated taxa with similar phenotypes from similar environments
- * Understand the direction of phenotypic change in a particular species over time
- * Predict the likely changes in phenotype and species' interactions based on collections data

Reasoning across phenotype & environment

Figure 2 Manual workflow conceptual diagram. This diagram shows the manual workflow to link phenotype and environment data sets using current tools and services.

2015 Deans et al. PLOS Biology. January 5, 2015. doi: 10.1371/journal.pbio.1002033

Phenotypes a portal to understanding the integration between organism and environment

Acknowledgements

The Phenoscape project is currently funded by NSF ABI Innovation collaborative grants (1661529, 1661356, 1661456, 1661516) and an ABI Development grant (1062542). Phenoscape was previously funded by NSF 1062404 and 0641025, and supported by NESCent, NSF 0905606.

 NSF Phenotype Research Coordination Network (phenotypercn.org), DBI-0956049

Phenoscape contributors, Advisory Board, Data sources (see: http://phenoscape.org/wiki/Acknowledgments)

Phenoscape collaborators

