Insect Soups: Enabling access to an underutilised and valuable resource?

Paul Flemons

November 2013

nature culture discover

What is Insect Soup?

- Samples of insects collected through bulk/indiscriminate sampling techniques:
 - Malaise traps, pitfall traps, flight intercept traps, berlese funnels, etc.

• Benefits:

- Large samples of broad range of taxa from one point over time.
- Targets specimens not easily captured by other means (active searches, light traps etc.).
- Passive capture, i.e. can be set and left.

What is Insect Soup?

Storage:

- Jars or tubes of ethanol.
- Some sorted into ordinal groups (e.g. Coleoptera, Diptera etc.).
- Many are mixed lots.

What we always know:

- Where and when the sample was collected.
- Who collected the sample.
- Where the vial is physically located in the collection.

What is Insect Soup?

- What we often don't know:
 - What's in them.
 - Taxa?
 - No. of specimens?
 - What was in them, and is now <u>not</u> in them (i.e. specimens removed from sample).

Without this information, it makes it extremely difficult for researchers to evaluate whether or not a particular bulk sample is useful.

Why is Insect Soup useful?

- Insect soup is a source of real and potential data for:
 - discovering new species,
 - extensions of species distributions /ranges
 - eg pest species
 - statistics on ecological patterns and measures of biodiversity richness and diversity,
 - record of taxa used in eco-genomics analyses
 - time series analysis

This data has application in :

- land use and conservation planning
- quarantine and pest species management
- climate change research
- disease vector analysis
- etc

Making our Insect Soups Accessible and useful to Science

Step 1: Photograph Soups

Patterns immediately obvious

Step 2: Build a website where the patterns are captured

- Group "like" insects
- Tag
- Extract image
- Count

Select	Symbol	Image	Class (Key)	Order <u>(Key)</u>	Sub-Order (Keys for each Order)	Family (Keys for each Orders)	Genus (Keys for each Family)	Count	Body	Wings	Legs	Colour
<u>Edit</u>		Q _A	Insecta	Coleoptera	unknown	unknown	unknown	1	2 cm Thorax divided from abdomen	unknown	unknown	Black
© Edit			Insecta	Diptera	unknown	unknown	unknown	4	3cm, long hairs: 3mm	2cm, clear with brown pattern	Thin,long, 3cm	Metallic green
Edit		*	Insecta	Coleoptera		unknown		3				
<u>Edit</u>		0	Insecta	Diptera		unknown		1				
© Edit			unknown	unknown		unknown		1				
	Add Species											

Step 3: Build website tools for researchers to explore the images: for new species, extensions of species distributions and the statistics for ecological patterns, and taxa used in eco-genomics analyses.

Result:

Cost effective way of researching insect richness and diversity by making the most of our existing collections

Examples of science making use of data on insect abundance and diversity

Nature **448**, 692-695 (9 August 2007) | doi:10.1038/nature06021; Received 20 April 2007; Accepted 14 June 2007

Low beta diversity of herbivorous insects in tropical forests

Vojtech Novotny¹, Scott E. Miller², Jiri Hulcr^{1,3}, Richard A. I. Drew⁴, Yves Basset⁵, Milan Janda¹, Gregory P. Journal of Insect Conservation John Auga⁸, Brus Isua⁸, Kenneth 1997, Volume 1, Issue 1, pp 25-42

Martin Mogia[§] & George D. Weible Diversity, disturbance, and sustainable use of Neotropical forests: insects as indicators for conservation monitoring

Keith S. Brown

Blair, Robert B. 1999. BIRDS AND BUTTERFLIES ALONG AN URBAN GRADIENT: SURROGATE TAXA FOR ASSESSING BIODIVERSITY? Ecological Applications 9:164-170, http://dx.doi.org/10.1890/1051-0761(1999)009[0164;BABAAU]2.0.CO;2

BIRDS AND BUTTERFLIES ALONG AN URBAN GRADIENT: SURROGATE TAXA FOR ASSESSING BIODIVERSITY?

Robert B. Blair 1,2

Ann. Zool. Fennici 31:71-81 Helsinki 31 January 1994

ISSN 0003-455X © 1994 Finnish Zoological Publishing Board PROCEEDINGS THE ROYAL

CrossMark

Hot-spots of insect diversity in northern Europe

Conservation of Insect Diversity: a Habitat Approach

Jennifer B. Hughes, Gretchen C. Daily, Paul R. Ehrlich

Article first published online: 7 JUL 2008 DOI: 10.1111/j.1523-1739.2000.99187.x

Self-similar patterns of nature: insect diversity at local to global scales

LETTERS TO NATURE

Insect species diversity. abundance and body size relationships

Evan Siemann, David Tilman & John Haarstad

Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, Minnesota 55108, USA

Ecological Applications, 6(2), 1996, pp. 594-607 © 1996 by the Ecological Society of America

DESIGNING A COST-EFFECTIVE INVERTEBRATE SURVEY: A TEST OF METHODS FOR RAPID ASSESSMENT OF BIODIVERSITY

IAN OLIVER AND ANDREW J. BEATTIE School of Biological Sciences, Macquarie University, Sydney 2109 Australia

Forest Ecology and Management

Volume 113, Issue 1, 4 January 1999, Pages 11-21

Relationships between insect diversity and habitat characteristics in plantation forests

Using Crowdsourcing: Manual segmentation and classification

Use Case 1: Non-expert

Tags

Yellow
Dark eyes
wing venation
Long antennae
Thickened wing venation
Yellow legs
0.5 to 1cm
Hymenoptera
Geographic location

Occurrence search results

Advanced search

Quick search

Using Crowdsourcing: Manual segmentation and classification

Use Case 2: expert

I have just spent less than 10 minutes putting family and other names (some down to species) to some in the soup.

- 1. Evaniidae
- 2. Sphecidae
- 3. Cynipidae
- 4. Gastrupiidae
- 5. Tiphiidae
- Apidae Braunsapis
 Megachilidae Megachile ferox
- 8. Halictidae Lasioglossum (Chilalictus)
 9. Colletidae *Hylaeus (Euprosopis elegans* (See below)

 $\frac{\text{http://www.padil.gov.au/pollinators/Search?sortType=ScientificName\&viewType=Details\&pageSize=10\&upperLeftLatitude=-30.1451\&upperLeftLongitude=144.1406\&lowerRightLatitude=-34.8859\&lowerRightLongitude=150.7324\&queryText1=Hylaeus&queryType1=all}$

Search in PaDIL on Hylaeus in the area of interest returns a number of possible species:

http://www.padil.gov.au/barrow-island/Pest/Main/137524/12301

Online image library

Tags

Yellow
Black
wing venation
striped abdomen
Short antennae
Thickened wing venation
Yellow legs
0.5 to 1cm
Hymenoptera
Tiphiidae

Online image library: Image recognition and data mining:

Yellow

Striped abdomen

hymenoptera

Hymenoptera + striped abdomen

+ Striped abdomen

+ yellow

+ hymenoptera

+ Hymenoptera + yellow

+ Hymenoptera + Striped abdomen

+ Hymenoptera + Tiphiidae

+ hymenoptera

+ hymenoptera

1. Segmentation – extracting individual images from the soup images

Use crowdsourcing apps and games to add more tags:

Tags

Yellow
Black
wing venation
striped abdomen
Short antennae
Thickened wing venation
Yellow legs
0.5 to 1cm
Hymenoptera
Tiphiidae

How computer vision help?

2. Classification – apply tags to each extracted image:

Tags

Yellow Black 0.5 to 1cm

ratio: length to width

3. Group and compare images:

4. Count and calculate:

Measures of

- richness
- abundance

The Insect Soup Challenge

Goals

Computer vision techniques are to be used to extract meaning from the imagery by categorising and reporting on specimen qualities such as:

- Colour, Size, Shape, and/or Wing Venation
- Location (via bounding box or colour mask)
- Grouping of specimens within an image into like groups approximating:
 - Taxonomic Orders eg Hymenoptera, Diptera
 - Morphospecies
 [See Bioscience Resources section below for further information]
- Counts of:
 - Overall number of specimens in an image
 - Diversity of groups in an image, for example:
 - Of Orders number of different Orders in an image
 - Of morphospecies number of different morphospecies in an image
- Abundance within each group in an image, for example:
 - Number of individual specimens in each order in an image
 - Number of individual specimens in each morphospecies in an image
- Similarity measures within groups
- Outliers

Insect Soup Challenge: Segmentation, Counting, and Simple Classification

Katarina Mele Computational Informatics, CSIRO Riverside Life Sciences Centre, 11 Julius Avenue, North Ryde, NSW, 2113

Thank you

www.australianmuseum.net.au

nature culture discover

