A high-throughput automated method for analyzing plant cuticle specimens

Rose Aubery and Surangi W. Punyasena

University of Illinois Urbana-Champaign Department of Plant Biology

Potential of Fossil Cuticle

- Dispersed leaf cuticle is a forgotten fossil
- More abundant in paleo record than entire leaves

Carboniferous Dispersed Cuticle

Taxonomic Characteristics

• Epidermal cells capture taxonomic characteristics

Urban et al 2018

Importance of Epidermal Cells

- Waxy layer that preserves imprint of epidermal cells
- Epidermal cells capture leaf development and reflect climatic conditions

Epidermal Cells and Climate

- Modern cuticle assemblages can help analyze the relationship between epidermal cell shape and climate
- Establishing a new paleoproxy for reconstructing paleoclimate could fill in gaps in environmental paleorecords

Vermont

Mississippi

West Virginia

Previous Research: Stomata

- Focused on stomata
- Reconstruct paleo CO₂
 concentration
- Stomatal counting has been automated

Previous Research: Epidermal Cells

• Previous research conducted manually

Previous Research: Epidermal Cells

- Previous research conducted manually
- Leaf area index (LAI) used to reconstruct canopy openness in the Cenozoic of Patagonia

Dunn et al 2015

Research Question

How does epidermal cell morphology change in different climates?

Research Question

How does epidermal cell morphology change in different climates?

Hypothesis: Leaves grown in different climates will have different epidermal cell morphology.

Research Question

How does epidermal cell morphology change in different climates?

Hypothesis: Leaves grown in different climates will have different epidermal cell morphology.

We used Acer rubrum to test this hypothesis

• *Acer rubrum* is a widespread species

- *Acer rubrum* is a widespread species
- Tolerates a wide range of climatic conditions

- Acer rubrum is a widespread species
- Tolerates a wide range of climatic conditions
- Ideal for studying relationship with climate

Known morphological relationship between leaf teeth and climate

Royer et al. 2009

 Acer rubrum samples obtained from Smithsonian herbarium

- Acer rubrum samples obtained from Smithsonian herbarium
- Climate Data from WorldClim

- Acer rubrum samples obtained from Smithsonian herbarium
- Climate Data from WorldClim
- Processing and Imaging of samples
 - Leaf fragment cut, stained, dehydrated and mounted
 - Imaged on slide-scanning microscope

- Acer rubrum samples obtained from Smithsonian herbarium
- Climate Data from WorldClim
- Processing and Imaging of samples
 - Leaf fragment cut, stained, dehydrated and mounted
 - Imaged on slide-scanning microscope
- Data Analysis
 - Filtering of noise in results

• Obtained samples from 120 individuals (211 leaves)

- Obtained samples from 120 individuals (211 leaves)
- Some samples are from a leaf reference collection used by paleobotanists (45 leaves)

- Obtained samples from 120 individuals (211 leaves)
- Some samples are from a leaf reference collection used by paleobotanists (45 leaves)
- These results are for a subset of 37 individuals (54 leaves)

- Obtained samples from 120 individuals (211 leaves)
- Some samples are from a leaf reference collection used by paleobotanists (45 leaves)
- These results are for a subset of 37 individuals (54 leaves)
- Sun and shade leaves could not be accounted for

Climate Data

Climate data was obtained from worldclim.org

Temperature Variables	Precipitation Variables
Annual Mean Temperature	Annual Precipitation
Mean Diurnal Range	Precipitation of Wettest Month
Isothermality	Precipitation of Driest Month
Temperature Seasonality	Precipitation Seasonality
Max Temperature of Warmest Month	Precipitation of Wettest Quarter
Min Temperature of Coldest Month	Precipitation of Driest Quarter
Temperature Annual Range	Precipitation of Warmest Quarter
Mean Temperature of Wettest Quarter	Precipitation of Coldest Quarter
Mean Temperature of Driest Quarter	
Mean Temperature of Warmest Quarter	
Mean Temp of Coldest Quarter	

Temperature Gradient Maps

Annual Mean Temperature

Temperature Gradient Maps

Precipitation Gradient Maps

Annual Precipitation

Precipitation Gradient Maps

Precipitation of the Driest Quarter

Precipitation of the Wettest Month

 Previous cuticle research analyzed by hand

- Previous cuticle research analyzed by hand
- This method and analysis are automated

- Previous cuticle research analyzed by hand
- This method and analysis are automated
- Used Fiji, distributed by ImageJ

- Previous cuticle research analyzed by hand
- This method and analysis are automated
- Used Fiji, distributed by ImageJ
- Selected areas not epidermal cells

• Used perimeter to filter the data

- · Used perimeter to filter the data
- Set initial boundary of 0.22 microns and 1.10 microns

• Applied 97.5% confidence interval

• Final data has relatively normal distribution

- Final data has relatively normal distribution
- Final measurements went into SVD analysis

 The results show that a combined 82.2% of the covariation between morphological epidermal cell variation and climate is explained by these two axes

- The results show that a combined 82.2% of the covariation between morphological epidermal cell variation and climate is explained by these two axes
- This is significant because it shows that there is a measurable relationship between epidermal cell morphology and climate, which is a step towards discovering a new paleoproxy

- The results show that a combined 82.2% of the covariation between morphological epidermal cell variation and climate is explained by these two axes
- This is significant because it shows that there is a measurable relationship between epidermal cell morphology and climate, which is a step towards discovering a new paleoproxy
- This is also important because replication for this study is made easier by automation

- The results show that a combined 82.2% of the covariation between morphological epidermal cell variation and climate is explained by these two axes
- This is significant because it shows that there is a measurable relationship between epidermal cell morphology and climate, which is a step towards discovering a new paleoproxy
- This is also important because replication for this study is made easier by automation
- Knowledge of paleoclimate is the only way in which we can begin to understand the climate systems of the future, especially the unknown factors associated with anthropogenic climate change.

• Finish analyzing all samples

- Finish analyzing all samples
- Dispersed leaf cuticle is a forgotten fossil abundant in the paleo record

- Finish analyzing all samples
- Dispersed leaf cuticle is a forgotten fossil abundant in the paleo record
- Has huge implications for the future of paleoclimate research

- Finish analyzing all samples
- Dispersed leaf cuticle is a forgotten fossil abundant in the paleo record
- Has huge implications for the future of paleoclimate research
- This method can be applied to taxonomic identification based on cuticle characteristics

Acknowledgements

- Lab mates: Michael Urban, Ingrid Romero, and Derek Haselhorst
- Regan Dunn, Curator at La Brea Tar Pits, Natural History Museum of Los Angeles
- IGB Staff: Austin Cyphersmith, Mayandi Sivaguru, Glenn Fried
- Office of Undergraduate Research Travel Grants
- LAS James Scholar Preble Research Award
- Microscopy support: Advances in Biological Informatics, DBI-1262561

INSE

