

 Higher-resolution version of micro-CT

- Higher-resolution version of micro-CT
- Higher-resolution version of regular CT

- Higher-resolution version of micro-CT
- Higher-resolution version of regular CT

• Non-invasive scanning of museum specimens, to create 3D model with pixel dimensions < 1 µm

- X-rays transmitted through a specimen
- Detector records xrays that are not absorbed
- Software converts data to pixels
- More software creates a 2D cross section
- Rotate and repeat

Assemble the 2D slices and convert into a 3D reconstruction

 Can selectively exclude certain body parts in order to view internal/obscure d structures

Systematic Entomology (2014), 39, 606-618

DOI: 10.1111/syen.12067

METHODS

Virtual dissections through micro-CT scanning: a method for non-destructive genitalia 'dissections' of valuable Lepidoptera material

THOMAS J. SIMONSEN and IAN J. KITCHING

Department of Life Sciences, Natural History Museum, London, U.K.

Abstract. Since its first application to the field more than 10 years ago, microcomputed tomography (micro-CT) has been a state-of-the-art technology in the study of insect morphology and anatomy. Despite showing great potential for various types of non-destructive 'dissections', the method has, however, seen very limited use in

Diagnostic structures in situ

Accurate measurements

Type specimens

Really small specimens

Systematic Entomology (2014), 39, 606-618

DOI: 10.1111/syen.12067

METHODS

Virtual dissections through micro-CT scanning: a method for non-destructive genitalia 'dissections' of valuable Lepidoptera material

Diagnostic structures in situ

Accurate measurements

Type specimens

Really small specimens

- Field observations
- Electron microscopy

 Can nano-CT scanning also help locate these structures?

"The bat–moth arms race has existed for over 60 million years..."
(Kawahara & Barber, 2015)

Volume 219 (11) June 2016

Journal of **Experimental Biology**

"The bat–moth arms race has existed for over 60 million years..."
(Kawahara & Barber, 2015)

Volume 219 (11) June 2016

Journal of **Experimental Biology**

"The bat–moth arms race has existed for over 60 million years..." (Kawahara & Barber, 2015)

Journal of **Experimental Biology**

DoodleBug Biology (@DoodleBugBio)

Evolution of defensive ultrasound production in moths

Evolution of defensive ultrasound production in moths

• Sphingidae – abdominal scales

Evolution of defensive ultrasound production in moths

• Sphingidae – abdominal scales

• Erebidae: Arctiinae – thoracic tymbals

Pyralidae/Crambidae-dorsal thoracic scales

Barber et al. (in prep.)

Pyralidae/Crambidae-dorsal thoracic scales

Erebidae: Calpinae – ventral abdominal scales

- Field observations
- Electron microscopy

 Can nano-CT scanning also help locate these structures?

- Field observations
- Electron microscopy

 Can nano-CT scanning also help locate these structures?

MAYBE!!!

Marthula (Noctuoidea: Notodontidae)

Abdomen moves during ultrasound production, but no correlated structures observed with regular microscopy or SEM

Iso-surface rendering

Volumetric rendering

Search for less dense cuticle – possible evidence of ultrasound production

Search for less dense cuticle – possible evidence of ultrasound production

Nano-CT offers new avenues for exploring insect biodiversity and morphological variation

Useful tool for developing new hypotheses

Acknowledgments

The Kawahara Lab FLMNH

Jesse Breinholt David Blackburn Geena Hill Andrei Sourakov

Nicholas Homziak

Lary Reeves

https://www.floridamuseum.ufl.edu/mcguire/kawahara/

The Barber Lab UF Nanoscale Research Facility

Brian Leavell Gary Scheiffele

Krystie Miner Edward Stanley

Florida Department of Agriculture – Division of Plant Industry

This research was funded by NSF grants CSBR-1349345, IOS-1121739, and IOS-1121807

Dalceridae photograph by
Ken-Ichi Ueda (2013) https://www.flickr.com/photos/kenichi/10769397635/in/photolist-hpDYHzciJHT5-qusukF-qF42Bd-EHjKeu
Creative Commons license:
https://creativecommons.org/licenses/li