Collections data as an historical experiment

Jenny L. McGuire mcguire.gatech.edu

Spatial Ecology & Paleontology Lab (SEPL)

Performing historical experiments

Conservation Biology

Museum data are critical to my research at many levels

Collections Database MUSEUM OF VERTEBRATE ZOOLOGY

Search Portals My Stuff About/Help

[Show/Hide Search Terms]

Found 7658 specimens.				Tools: Map, Customize, or Download \$				
Specimen Results								
0	GUID -	Identified As	country	state/province	specific locality	verbatim date		
	MVZ:Mamm:100030	Microtus californicus californicus	United States	California	Arroyo Mocho, 7 mi SE Livermore	14 Mar 1943		
	MVZ:Mamm:100959	Microtus californicus californicus	United States	California	mouth of El Toro Canyon	27 May 1943		
	MVZ:Mamm:100960	Microtus californicus californicus	United States	California	mouth of El Toro Canyon	27 May 1943		
	MVZ:Mamm:100961	Microtus californicus californicus	United States	California	mouth of El Toro Canyon	28 May 1943		
	MVZ:Mamm:100962	Microtus californicus californicus	United States	California	mouth of El Toro Canyon	28 May 1943		
	MVZ:Mamm:100963	Microtus californicus californicus	United States	California	mouth of El Toro Canyon	28 May 1943		
	MVZ:Mamm:100964	Microtus californicus californicus	United States	California	mouth of El Toro Canyon	29 May 1943		
	MVZ:Mamm:100965	Microtus californicus californicus	United States	California	mouth of El Toro Canyon	29 May 1943		

Specimen-based research

Natural Trap Cave, WY (150,000-

Microfauna: >16,000 specimens

Fossil identifications

exemplar specimens

- Taxonomic
 - species
 - subspecies
 - full populations to account for intraspecific variation

- Element
 - dental
 - cranial
 - postcranium
 - CT-scan

Natural Trap Cave, WY (150,000-

How does climate pattern morphological variation?

Microtus californicus California vole

How does climate pattern morphological variation?

Microtus californicus
California vole

Microtus californicus tooth shape covaries with mean annual precipitation

6 singular axes (46% of shape variation) predict 42% of variation in mean annual precipitation

What happens to this climate-linked morphospace through time?

modern climatelinked morphospace has a 21% lower standard deviation when compared to fossils p=0.003

Less precipitation today than in the past p=0.01

Challenges encountered habitat data & field notes

	1948		
	9	Lance Colin	
	8 mi. N. 13 mi. W Carely, 4700 ft., N. May 20	onoc to , cary.	
1655	3 Neotoma cinerca	453 -191-47-33	540
	& Citellus beldingi	291-75-45-12	276 8
	& Erechijon epixanthum	688-175-95-35	12/21
	3 Oberholseria chlorura	tetas 8mm	27.0
	& Carpodacus cassini	" 7 m m	24.6
	& Empidonax		16.39
	3 Spizella passerina	testes Imm	11.09
	May 21		
1662	9 Eulamas amoenis	201-85-32-17	53.3
	I Neotoma cineria	337-(23)-45-34	365.8
	& Eutamias amoensis	206-88-32-16	52.9
	& Cyanocita stelleri	tester 10 mm	(17.9
	& Cerchia familiaria	7	7.2 9
	3 Dendroica anduboni	4	11.48
			(2.98
1669	7 Penthester gambeli 9 Eutamios amagnese vo emb.	(book beaken) 211-95-33-17	51.7
1670		, 212-86-34-17	57.1 g
	& Citeller lateralis 6 end. x7mm		186.3
1672		, 242-85-4046	133.4
1673	^	251-84-38-17	162.6
	May 22		
1674	3 Empidonax	testes 4 mm.	11.19
	8 Peromyseus maniculatur	164-70-19-16	21.5
	q " " no end.	162-69-20-17	20.7
	8 Nestoura cinerea	407-175-46-33	420.0
	f " Suriner " eml		

M. Hildebrand

MVZ scanned field notes

Databases based upon museum-gathered data

Last Glacial Maximum (18-21 kya) vertebrate fossil localities are widespread

correlatively-identified niches are not sufficient to predict distributions. consistent southerly bias in SDMs hindcast

Davis, McGuire, & Orcutt, 2014. Ecography

Challenges encountered

data needed to improve models are hard to access

- physiological limitations
- interspecific interactions
- habitats and landscapes

museum data could fill some gaps

- weather data
- species co-occurrence notes
- standardized habitat data
- location-specific physiography
- absence data

Ecological/historical experiments

Integrating Collections & Ecological Research

1. How to reach more ecologists?

Convince them that an historical approach is critical to their understanding of ecological drivers. Create simple protocols for collecting & submitting voucher specimens and covariate data.

2. Which ecological groups specifically are well-suited to using collections data, in your experience?

Any ecologist with an historical perspective/background.

- 3. What data is missing from collections data that, if collected in the future, would make collections data better for ecologists?
- Specimen & locality images
- Specimen-specific covariate data: interspecific interactions, habitats, landscapes, physiology, weather
- Detailed field notes
- Absence data
- References to tissue samples, and DNA or isotopic data produced

Spatial Ecology & Paleontology Lab (SEPL)

PI: Jenny L. McGuire

jmcguire@gatech.edu

website: mcguire.gatech.edu

