

Human Classification

- First life (first appearing 3,800mya)
 - Chordates (first appearing 542mya)
 - Mammals (first appearing 180mya)
 - Primates (first appearing 55mya)
 - Anthropoids (first appearing 45mya)
 - Hominoidea (first appearing 30mya)
 - Hominidae (first appearing 15mya)
 - Homininae (first appearing 12mya)
 - Hominini (first appearing 7mya)
 - Homo (first appearing 2.8mya)
 - Homo sapiens (first appearing 0.2mya)

Time and Place of Human Origins

- A "hominin" is an animal closer to humans than any ape.
- First "hominins" are from Africa appearing about 6mya.
- This matches up with DNA evidence indicating that apes and humans split by 6-7mya.

How long has Africa been the 'cradle' of human-kind?

- Monkey & Apes since 30 mya
- some apes leave Africa, at 16 mya.
- In Europe, significant changes
- European descendents returned to Africa at 8-9 mya

What happened next?

- Apes that returned to Africa had adapted to forests while in Europe.
- Their bodies were poorly proportioned for quadrupedal walking.
- When some species began to inhabit the spreading Savanna, bipedalism was used.
- By 4.2 mya fully capable bipedal hominin's had evolved.
- Over the next 1 million years a number of different species evolved, only one gave rise to living humans.

What did early hominins look like?

- Upright posture
- Human-like hand & foot proportions
- Chimp-like curvature of their digits
- Big teeth with thick enamel
- Pronounced dimorphism
- Brains just a bit bigger...

Why good were these features?

- foraging while traveling
- better for manipulation of small objects
- a diet of gritty material (dirty tubers) or large amounts of fibrous material (like grass)
- greater reliance on extractive foraging

Between 4.2 and 1.7 mya some species became more extreme

• Around 2 mya some super-robust hominin species show up.

• This speaks to increasing specialization to a niche that other hominins were also filling.

"There's more than one way to skin a cat"

- Around the same time we see increasing proliferation of stone tools.
- Another hominin now with smaller teeth also becomes more frequently recovered.

A bunch of *Homo* species

- All had bigger brains than the Australopiths.
- Homo habilis and Homo rudolfensis were smallish.
- Homo erectus was large... it is our most direct ancestor.

Why small teeth & big brains

- Homo was relying more on tools it made, rather than tools that grew out of its head (teeth) for food processing.
- More effective tool use required more complex thinking and larger brains.

Homo habilis of the second of

Only *Homo erectus* survived beyond 1.4mya

- Homo erectus left Africa and reduced its extinction susceptibility with wider geographic range.
- Its larger body size and possibly different proportions may have provided some 'super powers' that led to a completely different niche.

A. afarensis A.L. 288-1 "Lucy" (320)

What were the 'super powers' of *Homo erectus*?

- With a larger body size and slender build it was probably exceptionally heat tolerant (like modern humans)
- In addition its long legs and heat tolerance probably allowed it to keep moving at a faster pace than other savanna animals during the heat of the day.
- These two traits heat tolerance & endurance – were pivotal

What good is heat tolerance and endurance to *Homo erectus*?

- It could be active in the hottest part of the day with safety from powerful predators like lions.
- It could capture prey animals who flag in the heat (persistence hunting).

What else happened when *Homo* became a hunter?

- Higher demands for energy demanded even more efficient hunting.
- Safety from predation allowed longer lifespan and potential for longer juvenile learning periods.
- Since ultimate intelligence and hunting skill is linked to lifespan those individuals who took longer to grow up and lived longer survived better and also had bigger brains.
- So brain size continued to increase in Homo erectus.
- The demands for more efficient hunting led to more complex and efficient tools.
- Demands on the teeth lessened and food energy increased with discovery of fire and cooking at around 1.1mya.

Homo erectus had spread across the globe by 1 mya... mean while in Africa

- More dramatic changes continued and by 600,000 years ago a slightly different hominin with a fully modern-sized brain, large nose appeared and spreadout of Africa again.
- Homo heidelbergensis was the largest hominin yet -- larger than us.
- Living up north began to change it...

Homo neanderthalensis

- Robust, barrel-chested, shorted limbed
- Possible 'pre-neanderthals at 300,000-220,000 years ago
- Definitive specimens until 120,000 years ago
- Associated with first new development in stone tools by 300,000
- Probably an obligate carnivore
- Shorter juvenile period than modern humans

Homo neanderthalensis

- Robust, barrel-chested, shorted limbed
- Possible 'pre-neanderthals at 300,000-220,000 years ago
- Definitive specimens until 120,000 years ago
- Associated with first new development in stone tools by 300,000
- Probably an obligate carnivore
- Shorter juvenile period than modern humans

Homo sapiens

- Back in Africa...
- Ethiopia and Kenya yield earliest fossils at ~195,000 years old
- By 110,000 years ago modern humans are in middle east.
- By 100,000 years ago we have evidence of asthetic appreciation in Southern Africa.
- BY 30,000 years ago we invade Europe, introduce new stone tool cultures and push Neanderthals to extinction.

Major Themes

Connection to rest of the tree of life (no monoliths)

 Overview major groups of mammals and defining features

Comparing and contrasting basic human

features to other groups

Comparing DNA

Major Themes

Environmental impact on our species over time

- Map changes in climate against changes in form (cooling and aridity with bipedalism, tooth size, tool types, brain size, body form).
- Compare changes hominins and their contemporaries (late Miocene and early Pleistocene changes in diet, and tooth form).

Major Themes

Understanding human species, society and health

- Comparison to...
- other animals
- apes
- traditional societies
- By analysis of archaeological record

Basic Facts & Concepts

- Big picture time scale
- Taxonomy
- Diversity of human fossils, their time period, geography and physical traits
- Comparative anatomy & its correlation to ecology and function

MorphoSource Resources

Models

- Scans of casts from Duke Univ. anthropology collection
- Open in Meshlab
- Species name
- Age
- Locality
- Collector
- Collection year

MorphoSource Resources

Basic features of the skull

- Brain size (cognition)
- Tooth size (diet)
- Canine size, shape (social structure)
- Tooth proportions (diet foraging strategies – Paranthropus v. Homo)
- Face shape, prognathism
- Foramen magnum position (bipedalism)
- Mandible shape (chin)

MorphoSource Resources

Basic features of the skeleton

- Hand proportions (knuckle-walking, manual dexterity)
- Foot morphology (bipedalism)
- Pelvis form (bipedalism, obstetrics)
- Hindlimbs (joint size, length, knee shape)
- Vertebral column (lumbar lordosis and associated features)
- Shoulders (scapula form)