

Sample preparation • Maximize the resolution of the scan • Square Detector plate • Efficient use of space • Cylindrical is better • Centralized position • Multi-scan used for odd shaped samples • Increased time • Can lead to truly colossal file sizes

Contrast density differentiation

- Contrast
 - X-ray energy (KV)
 - kV=X-ray penetrating power
 - Too high
 - No X-rays stopped by object
 - loss of resolvability in low density areas
 - Too low
 - All X-rays stopped by object
 - loss of resolvability in high density areas
 - Maximize grayscale range

Noise

- Too few photons to produce a clear image
 - Grainy reconstructions
- Increase photons
 - Increase current
 - = increase photons
 - Increase detector capture time
 - = Increase photons

X-ray Summary

- Voltage: Increases Penetrating Power of X-rays
- Current: Increases number / Intensity of X-rays
- Resolution: spatial differentiation
- Contrast: attenuation differentiation
- Noise- a result of insufficient signal
- Geometric unsharpness: focal spot too large