

All Asia: Bringing Asian plant diversity to digital life

Charles C. Davis (lead)

Harvard University Herbaria cdavis@oeb.harvard.edu

Core Objective

❖ Digitize 3 million Asian vascular plant specimens from 19 U.S. herbaria with special attention on Southeast Asia and the Himalaya-Hengduan mountains.

Rationale

Our main goal is to mobilize data to support basic biodiversity discovery and facilitate ecological and evolutionary investigations especially in hyperdiverse regions of Asia

Rationale: Why Asia?

- Largest continent on Earth;
- Complex terrain;
- 90,000-100,000 species of vascular plants;
- Astonishing functional diversity.

- 54 million herbarium specimens in iDigBio;
- 4.5% are from Asia and 2% from US institutions;
- GBIF = 78 million; 12% from Asia very few with images.

Rationale: AIMS

- Digitize 3 million vascular plant specimens from US herbaria (Aim 1);
- Develop novel informatics tools and high-throughput digitization methods (Aim 2);
- Aggregate and link all digitized records into an All Asia portal, 15 million specimens (Aim 3);
- ❖ Enhance opportunities for grades 9–12 STEM learners and early career scientists (Aim 4).

Rationale: Research

- Species discovery and biogeography in iconic biodiversity hotspots;
- Elucidating eco-evolutionary drivers of diversification in contrasting temperate and tropical biomes;
- Investigating species phenological response to climate;
- Protecting and forecasting biodiversity across imperiled biomes;
- Creating next-generation herbarium digitization via innovative design solutions.

Digitization Plan: Consortium Organization

- Harvard University (HUH)
- Bishop Museum (BISH)
- Brown University (BRU)
- U. of Alaska (ALA)
- Botanical Research Inst. Texas (BRIT)
- Chicago Botanic Garden (CHIC)
- U. of Cincinnati (CINC)
- Cleveland Museum of Natural History (CLM)
- U. of Colorado (COLO)
- U. of Massachusetts Amherst (MASS)

- U. of Michigan (MICH)
- Missouri Botanical Garden (MO)
- Miami University (MU)
- U. of New Hampshire (NHA)
- New York Bot, Garden (NY)
- Ohio State Uni. (OS)
- California Bot. Garden (RSA)
- U. of Vermont (VT)
- Smithsonian (US; not funded)

Digitization Plan: **Organization**

Hedrick et al. (2020)

Patrick Sweeney

Innovation: HUH Conveyor Belt

Back to the future:

next generation imaging

- Single station workflow
- Ergonomic design customized for herbarium sheets
- Separate imaging from transcription
- 8 seconds per image! (down from 20 sec)
- Transcription virtual, separated from imaging (40% reduction)

Key design features:

- 1. Camera and mount
- 2. LED lighting
- 3. Tablet-sized monitor with adjustible arm
- 4. Adjustable queue tray
- 5. Receiving area
- 6. Imaging surface
- 7. Cubby
- 8. Height-adjustable legs
- 9. Barcode dispenser
- 10. Easy-fire button

Innovation: Machine learning and label transcription

- ❖ Label transcription still **largely completed** by human workers; plenty of room for automation
- ❖ Goal: Use the **LSTM-RNN tool** to generate **automate transcription** of handwritten herbarium specimens labels

Code will be made available through an opensource license for broad use

Innovation: Rapid data entry

- Enhanced Symbiota for rapid data entry workflow
- Leveraging lessons learned from HUH rapid entry tool
- Automatic label detection
- Text suggestions from Al-based automatic transcription

Mobilization

- All data and images will be available to public through All Asia Symbiota portal
- ❖ 12 million records contributed by international partners (including P, France; L, Netherlands; MW, Russia; CNH, China);

❖ 15 million records total

Leontopodium pusillum Hand.-Mazz.

David F. Murray 13071 China, Wuli, along the Golmud-Lhasa Hwy., 34.47 92.72

Heracleum millefolium

Full Record Details

David F. Murray 13075 China, Wuli, along the Golmud-Lhasa Hwy., 34.47 92.72

Full Record Details

Carex moorcroftii Falc.

David F. Murray 13068 China, Wuli, along the Golmud-Lhasa Hwy., 34.47 92.72 **Full Record Details**

David F. Murray 13070 China, Wuli, along the Golmud-Lhasa Hwy., 34.47 92.72 **Full Record Details**

Outreach: Bringing biodiversity and computer scientists together

Planned Workshops:

- ❖Plant Biodiversity in Asia: promises and challenges (Boston, MA)
- Collections and the digital herbarium (Ann Arbor, MI)
- ❖ Novel applications of digital collections (Fairbanks, AK)

Overarching question:
What does the
herbarium of the future
look like?

OUTREACH: HACKATHONS

FROM PROBLEMS TO PROTOTYPES TO PRODUCTION

ideathons, hackathons, and experiential learning centered around interdisciplinary collaboration and innovation

1

Identify problems to be solved to advance research and on-the-ground impact

2

Match teams to problems & mentors to build prototypes through virtual and inperson hackathons

3

Continue development on promising prototypes with student development teams & mentors

Acknowledgements

